cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A007858 G.f. is 1 - 1/f(x), where f(x) = 1+x+3*x^2+9*x^3+32*x^4+... is 1/x times g.f. for A063020.

Original entry on oeis.org

1, 2, 4, 13, 44, 164, 636, 2559, 10556, 44440, 190112, 824135, 3612244, 15981632, 71277736, 320121747, 1446537564, 6571858168, 30000766128, 137544893940, 633051803120, 2923867281660, 13547594977500, 62955434735505, 293336372858724, 1370149533359784, 6414423856436816
Offset: 1

Views

Author

Martin Klazar, Mar 15 1996

Keywords

Comments

Number of maximal independent sets in rooted plane trees on n nodes. - Olivier Gérard, Jul 05 2001

Crossrefs

Cf. A000108.

Programs

  • Maple
    series(1-x/RootOf(Z-_Z^2-_Z^3+_Z^4-x), x=0,20); # _Mark van Hoeij, May 28 2013
  • Mathematica
    Rest[CoefficientList[1-x/InverseSeries[Series[x-x^2-x^3+x^4, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Nov 14 2014 *)
    Table[Sum[Binomial[n + k, k]/(n + k)*Sum[(Binomial[j, n - k - j + 1]*Binomial[k, j]*(-1)^(n + k - j + 1)), {j, 0, k}], {k, 1, n}] + CatalanNumber[n], {n, 0, 50}] (* G. C. Greubel, Feb 15 2017 *)
  • Maxima
    a(n):=sum(binomial(n+k,k)/(n+k)*sum(binomial(j,n-k-j+1)*binomial(k,j)*(-1)^(n+k-j+1),j,0,k),k,1,n)+1/(n+1)*binomial(2*n,n); /* Vladimir Kruchinin, Nov 13 2014 */
  • PARI
    my(x='x+O('x^66)); Vec(1-x/serreverse(x-x^2-x^3+x^4)) \\ Joerg Arndt, May 28 2013
    

Formula

a(n+1) = Sum_{k = 1..n} ( binomial(n+k,k)/(n+k)*Sum_{j = 0..k} ( binomial(j,n-k-j+1)*binomial(k,j)*(-1)^(n+k-j+1) ) ) + C(n), where C(n) is a Catalan number. - Vladimir Kruchinin, Nov 13 2014
Recurrence: 16*(n-1)*n*(2*n-3)*(17*n^2 - 81*n + 96)*a(n) = (n-1)*(1819*n^4 - 14124*n^3 + 40377*n^2 - 50320*n + 23040)*a(n-1) + 8*(2*n-5)*(4*n-11)*(4*n-9)*(17*n^2 - 47*n + 32)*a(n-2). - Vaclav Kotesovec, Nov 14 2014
Asymptotics (Klazar, 1997): a(n) ~ sqrt(5731-4635/sqrt(17)) * ((107+51*sqrt(17))/64)^n / (256 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 14 2014

A348410 Number of nonnegative integer solutions to n = Sum_{i=1..n} (a_i + b_i), with b_i even.

Original entry on oeis.org

1, 1, 5, 19, 85, 376, 1715, 7890, 36693, 171820, 809380, 3830619, 18201235, 86770516, 414836210, 1988138644, 9548771157, 45948159420, 221470766204, 1069091485500, 5167705849460, 25009724705460, 121171296320475, 587662804774890, 2852708925078675, 13859743127937876
Offset: 0

Views

Author

César Eliud Lozada, Oct 17 2021

Keywords

Comments

Suppose n objects are to be distributed into 2n baskets, half of these white and half black. White baskets may contain 0 or any number of objects, while black baskets may contain 0 or an even number of objects. a(n) is the number of distinct possible distributions.

Examples

			Some examples (semicolon separates white basket from black baskets):
For n=1: {{1 ; 0}} - Total possible ways: 1.
For n=2: {{0, 0 ; 0, 2}, {0, 0 ; 2, 0}, {0, 2 ; 0, 0}, {1, 1 ; 0, 0}, {2, 0 ; 0, 0}} - Total possible ways: 5.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(t=0, 1-signum(n),
          add(b(n-j, t-1)*(1+iquo(j, 2)), j=0..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 17 2021
  • Mathematica
    (* giveList=True produces the list of solutions *)
    (* giveList=False gives the number of solutions *)
    counter[objects_, giveList_: False] :=
      Module[{n = objects, nb, eq1, eqa, eqb, eqs, var, sol, var2, list},
       nb = n;
       eq1 = {Total[Map[a[#] + 2*b[#] &, Range[nb]]] - n == 0};
       eqa = {And @@ Map[0 <= a[#] <= n &, Range[nb]]};
       eqb = {And @@ Map[0 <= b[#] <= n &, Range[nb]]};
       eqs = {And @@ Join[eq1, eqa, eqb]};
       var = Flatten[Map[{a[#], b[#]} &, Range[nb]]];
       var = Join[Map[a[#] &, Range[nb]], Map[b[#] &, Range[nb]]];
       sol = Solve[eqs, var, Integers];
       var2 = Join[Map[a[#] &, Range[nb]], Map[2*b[#] &, Range[nb]]];
       list = Sort[Map[var2 /. # &, sol]];
       list = Map[StringReplace[ToString[#], {"," -> " ;"}, n] &, list];
       list = Map[StringReplace[#, {";" -> ","}, n - 1] &, list];
       Return[
        If[giveList, Print["Total: ", Length[list]]; list, Length[sol]]];
       ];
    (* second program: *)
    b[n_, t_] := b[n, t] = If[t == 0, 1 - Sign[n], Sum[b[n - j, t - 1]*(1 + Quotient[j, 2]), {j, 0, n}]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 16 2023, after Alois P. Heinz *)

Formula

Conjecture: D-finite with recurrence +7168*n*(2*n-1)*(n-1)*a(n) -64*(n-1)*(1759*n^2-5294*n+5112)*a(n-1) +12*(7561*n^3-75690*n^2+165271*n-101070)*a(n-2) +5*(110593*n^3-743946*n^2+1659971*n-1232778)*a(n-3) +2680*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4)=0. - R. J. Mathar, Oct 19 2021
From Vaclav Kotesovec, Nov 01 2021: (Start)
Recurrence (of order 2): 16*(n-1)*n*(2*n - 1)*(51*n^2 - 162*n + 127)*a(n) = (n-1)*(5457*n^4 - 22791*n^3 + 32144*n^2 - 17536*n + 3072)*a(n-1) + 8*(2*n - 3)*(4*n - 7)*(4*n - 5)*(51*n^2 - 60*n + 16)*a(n-2).
a(n) ~ sqrt(3 + 5/sqrt(17)) * (107 + 51*sqrt(17))^n / (sqrt(Pi*n) * 2^(6*n+2)). (End)
From Peter Bala, Feb 21 2022: (Start)
a(n) = [x^n] ( (1 - x)*(1 - x^2) )^(-n). Cf. A234839.
a(n) = Sum_{k = 0..floor(n/2)} binomial(2*n-2*k-1,n-2*k)*binomial(n+k-1,k).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 9*x^3 + 32*x^4 + 119*x^5 + ... is the g.f. of A063020.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k.
The o.g.f. A(x) is the diagonal of the bivariate rational function 1/(1 - t/((1-x)*(1-x^2))) and hence is an algebraic function over Q(x) by Stanley 1999, Theorem 6.33, p. 197.
Let F(x) = (1/x)*Series_Reversion( x*(1-x)*(1-x^2) ). Then A(x) = 1 + x*d/dx (log(F(x))). (End)
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n+k-1, k)*binomial(2*n-k-1, n-k). Cf. A352373. - Peter Bala, Jun 05 2024

Extensions

More terms from Alois P. Heinz, Oct 17 2021

A365752 Expansion of (1/x) * Series_Reversion( x*(1+x)*(1-x)^4 ).

Original entry on oeis.org

1, 3, 16, 103, 735, 5592, 44452, 364815, 3067558, 26290517, 228819168, 2016953848, 17968790029, 161536295244, 1463535347928, 13349907110367, 122499957767130, 1130001670577730, 10472708110616136, 97468774074103041, 910582642690819351
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n+k, k)*binomial(5*n-k+3, n-k))/(n+1);
    
  • SageMath
    def A365752(n):
        h = binomial(5*n + 3, n) * hypergeometric([-n, n + 1], [-5 * n - 3], -1) / (n + 1)
        return simplify(h)
    print([A365752(n) for n in range(21)])  # Peter Luschny, Sep 20 2023

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(n+k,k) * binomial(5*n-k+3,n-k).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(4*n-2*k+2,n-2*k). - Seiichi Manyama, Jan 18 2024
a(n) = (1/(n+1)) * [x^n] 1/( (1+x) * (1-x)^4 )^(n+1). - Seiichi Manyama, Feb 16 2024

A063030 Reversion of y - y^2 - y^4 + y^5.

Original entry on oeis.org

0, 1, 1, 2, 6, 19, 63, 220, 795, 2942, 11099, 42536, 165126, 647955, 2565946, 10241616, 41158598, 166402323, 676338003, 2761988994, 11327162406, 46631572295, 192638451780, 798316442580, 3317866307145, 13825837134096
Offset: 0

Views

Author

Olivier Gérard, Jul 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[y - y^2 - y^4 + y^5, {y, 0, 30}], x], x]
  • PARI
    a(n)=if(n<1,0,polcoeff(serreverse(x-x^2-x^4+x^5+x*O(x^n)),n))

Formula

D-finite with recurrence 1458*n*(n-1)*(n-2)*(2*n-1) *(981649511*n -2631216939)*a(n) -486*(n-1)*(n-2) *(24210415932*n^3 -114067288649*n^2 +155533650884*n -64732315335)*a(n-1) +54*(n-2) *(39787015892*n^4 -313539301751*n^3 +992577496688*n^2 -1613867842189*n +1173502139880)*a(n-2) +(-27607572942679*n^5 +295135536608825*n^4 -1205223186688595*n^3 +2314131935158975*n^2 -2033367943220766*n +619177732684560)*a(n-3) -5*(5*n-21) *(5408009*n +1144402484)*(5*n-19) *(5*n-18)*(5*n-17) *a(n-4)=0. - R. J. Mathar, Mar 21 2022
a(n+1) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,n) * binomial(2*n-3*k,n). - Seiichi Manyama, Sep 26 2023

A365753 Expansion of (1/x) * Series_Reversion( x*(1+x)*(1-x)^5 ).

Original entry on oeis.org

1, 4, 27, 220, 1984, 19064, 191325, 1981932, 21031965, 227463808, 2498039219, 27782561352, 312281382836, 3541879743840, 40484779373060, 465888833819532, 5393215780225983, 62761359573224612, 733784067570047400, 8615217370731224160, 101533102164551821896
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n+k, k)*binomial(6*n-k+4, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(n+k,k) * binomial(6*n-k+4,n-k).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(5*n-2*k+3,n-2*k). - Seiichi Manyama, Jan 18 2024
a(n) = (1/(n+1)) * [x^n] 1/( (1+x) * (1-x)^5 )^(n+1). - Seiichi Manyama, Feb 16 2024

A365751 Expansion of (1/x) * Series_Reversion( x*(1+x)*(1-x)^3 ).

Original entry on oeis.org

1, 2, 8, 38, 201, 1134, 6688, 40734, 254237, 1617572, 10452416, 68408626, 452530659, 3020870352, 20324167488, 137672551630, 938154745773, 6426806842566, 44234352581896, 305743015718028, 2121318029754770, 14769052147618740, 103148538125870880
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n+k, k)*binomial(4*n-k+2, n-k))/(n+1);
    
  • SageMath
    def A365751(n):
        h = binomial(4*n + 2, n) * hypergeometric([-n, n + 1], [-4 * n - 2], -1) / (n + 1)
        return simplify(h)
    print([A365751(n) for n in range(23)])  # Peter Luschny, Sep 20 2023

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(n+k,k) * binomial(4*n-k+2,n-k).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(3*n-2*k+1,n-2*k). - Seiichi Manyama, Jan 18 2024
a(n) = (1/(n+1)) * [x^n] 1/( (1+x) * (1-x)^3 )^(n+1). - Seiichi Manyama, Feb 16 2024

A365854 Expansion of (1/x) * Series_Reversion( x*(1+x)^2*(1-x)^3 ).

Original entry on oeis.org

1, 1, 4, 13, 55, 232, 1052, 4869, 23206, 112519, 554560, 2767336, 13959941, 71060356, 364569352, 1883143669, 9785481498, 51118097686, 268294595396, 1414106565611, 7481787454031, 39721596068000, 211549545257760, 1129912319370600, 6050931114958080
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(2*n+k+1, k)*binomial(4*n-k+2, n-k))/(n+1);
    
  • SageMath
    def A365854(n):
        h = binomial(2*(2*n + 1), n) * hypergeometric([-n, 2*(n + 1)], [-2*(2*n + 1)], -1) / (n + 1)
        return simplify(h)
    print([A365854(n) for n in range(25)])  # Peter Luschny, Sep 20 2023

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(2*n+k+1,k) * binomial(4*n-k+2,n-k).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(2*n-2*k,n-2*k). - Seiichi Manyama, Jan 18 2024
a(n) = (1/(n+1)) * [x^n] 1/( (1+x)^2 * (1-x)^3 )^(n+1). - Seiichi Manyama, Feb 16 2024

A133656 Number of below-diagonal paths from (0,0) to (n,n) using steps (1,0), (0,1) and (2k-1,1), k a positive integer.

Original entry on oeis.org

1, 2, 6, 23, 99, 456, 2199, 10962, 56033, 292094, 1546885, 8299058, 45010492, 246377362, 1359339710, 7551689783, 42206697209, 237156951618, 1338917298708, 7591380528489, 43207023511013, 246773061257046, 1413889039642479, 8124356140582768, 46807462792903984
Offset: 0

Views

Author

Brian Drake, Sep 20 2007

Keywords

Examples

			a(4) = 99 since there are 90 Schroeder paths (A006318) from (0,0) to (4,4) plus DNNEN, DNENN, DENNN, DdNN, DNdN, DNNd, EDNNN, ENDNN and dDNN, where E=(1,0), N=(0,1), D=(3,1) and d=(1,1).
		

Crossrefs

Programs

  • Maple
    A:=series(RootOf(1+_Z*(x-1)+_Z^2*(x-x^2)+_Z^3*x^2-_Z^4*x^3), x, 21): seq(coeff(A,x,i), i=0..20);
  • Mathematica
    a[n_] := Sum[Binomial[n+k, n] * Sum[Binomial[j, -n - 3k + 2j - 2]* (-1)^(n+k-j+1) * Binomial[n+k+1, j], {j, 0, k+n+1}], {k, 0, n}]/(n+1);
    a /@ Range[0, 24] (* Jean-François Alcover, Oct 06 2019, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum(binomial(n+k,n)*sum(binomial(j,-n-3*k+2*j-2)*(-1)^(n+k-j+1) *binomial(n+k+1,j),j,0,k+n+1),k,0,n)/(n+1); /* Vladimir Kruchinin, Oct 11 2011 */

Formula

G.f. g(x) satisfies: g(x) = 1 + x*g(x)^2+x*g(x)/(1-x^2*g(x)^2).
a(n) = sum(k=0..n, binomial(n+k,n)*sum(j=0..k+n+1, binomial(j,-n-3*k+2*j-2) *(-1)^(n+k-j+1)*binomial(n+k+1,j)))/(n+1). - Vladimir Kruchinin, Oct 11 2011
From Peter Bala, Feb 22 2022: (Start)
G.f. g(x) = (1/x)*series reversion of x*(1 + x)*(1 - x)^2/(1 + x - x^2).
It appears that 1 + x*g'(x)/g(x) = 1 + 2*x + 8*x^2 + 41*x^3 + 220*x^4 + ... is the g.f. of A348474. (End)

A201079 Irregular triangle read by rows: number of {0,2,4,6...}-shifted Schroeder paths of length n and area k.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 3, 3, 0, 1, 2, 4, 6, 7, 7, 5, 0, 0, 1, 2, 4, 7, 11, 14, 18, 20, 19, 15, 8, 0, 0, 1, 2, 4, 8, 12, 19, 26, 35, 43, 52, 57, 61, 57, 46, 30, 13, 0, 0, 0, 1, 2, 4, 8, 13, 21, 32, 45, 61, 81, 101, 125, 146, 167, 183, 194, 191, 178, 146, 103, 58, 21, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 26 2011

Keywords

Examples

			Triangle begins
1
1
1 2 0
1 2 3 3 0
1 2 4 6 7 7 5 0 0
1 2 4 7 11 14 18 20 19 15 8 0 0
1 2 4 8 12 19 26 35 43 52 57 61 57 46 30 13 0 0 0
...
		

Crossrefs

Row sums give A063020. Rows converge to A015128.
Cf. S-shifted Schroeder paths for various S: A201075 {0,1}, A201076 {0,2}, A201080 {0,1,3,5...}, A201159 {0,1,2}.

Programs

  • Mathematica
    max = 8; s0 = Range[2, max, 2];
    gf = Expand /@ FixedPoint[With[{g = Normal@#}, 1 + q x g (g /. {x :> q^2 x}) + Sum[q^(j^2 - j) x^j Product[g /. {x :> q^(2 i - 2) x}, {i, j}], {j, s0}] + O[x]^max] &, 0];
    Flatten[Reverse[CoefficientList[#, q]][[;; ;; 2]] & /@ CoefficientList[gf, x]] (* Andrey Zabolotskiy, Jan 02 2024 *)

Extensions

Name and rows 3 and 5 corrected and row 7 added by Andrey Zabolotskiy, Jan 02 2024

A366041 Expansion of (1/x) * Series_Reversion( x*(1-x)*(1-x^4) ).

Original entry on oeis.org

1, 1, 2, 5, 15, 48, 160, 549, 1930, 6919, 25200, 92976, 346757, 1305140, 4951216, 18912245, 72675114, 280761670, 1089800270, 4248149795, 16623209911, 65273370720, 257115465600, 1015719256200, 4023178881540, 15974388769653, 63570826294760
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, n)*binomial(2*n-4*k, n))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,n) * binomial(2*n-4*k,n).
Showing 1-10 of 11 results. Next