cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Martin Klazar

Martin Klazar's wiki page.

Martin Klazar has authored 12 sequences. Here are the ten most recent ones:

A081054 Crossing matchings: linear chord diagrams with 2n nodes and n arcs in which each arc crosses another arc.

Original entry on oeis.org

1, 0, 1, 4, 31, 288, 3272, 43580, 666143, 11491696, 220875237, 4681264432, 108475235444, 2728591657920, 74051386322580, 2156865088819692, 67113404608820943, 2221948578439255200, 77990056655776149179
Offset: 0

Author

Martin Klazar, Apr 15 2003

Keywords

Examples

			The 4 crossing matchings on nodes 1, 2, ..., 6 are {13, 25, 46}, {14, 25, 36}, {15, 24, 36} and {14, 26, 35}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n]=Module[{x, y, z, i}, y=Sum[a[i]x^i, {i, 0, n-1}]+z*x^n+O[x]^(n+1); Solve[D[y, x]==(-1+y-x^2y^3)/(2x^2y(1+x*y)), z][[1, 1, 2]]]

Formula

The g.f. (a formal power series) F = 1 + x^2 + 4*x^3 + ... satisfies the differential equation F' = (-x^2*F^3 + F - 1)/(2*x^3*F^2 + 2*x^2*F).
a(n) is asymptotic to (2n)!/(e 2^n n!). In other words, the probability that a random matching is a crossing matching is asymptotic to 1/e; see Lemma 3.12 of Stoimenow reference. - Benoit Cloitre, Apr 18 2003; corrected by Dean Hickerson, Apr 21 2003

A008910 Join 2n points on a line with n arcs above the line; form graph with the arcs as nodes, joining 2 nodes when the arcs cross. a(n) is the number of cases in which the graph is symmetric about middle and has no isolated nodes.

Original entry on oeis.org

0, 1, 2, 9, 26, 122, 466, 2299, 10316, 54179
Offset: 1

Author

klazar(AT)kam.mff.cuni.cz (Martin Klazar)

Keywords

A007860 Maximal matchings in rooted plane trees on n nodes.

Original entry on oeis.org

1, 1, 4, 12, 44, 175, 718, 3052, 13308, 59139, 266974, 1220879, 5643562, 26327769, 123793450, 586078393, 2791408028, 13365916545, 64302770488, 310672722803, 1506737267266, 7332920012492, 35800278685252, 175286440178448, 860517328379634, 4234766396436095
Offset: 1

Author

Martin Klazar (klazar(AT)kam.mff.cuni.cz)

Keywords

Formula

G.f. f(x) satisfies f(x)^7 - (6+x) * f(x)^6 + (15+6*x) * f(x)^5 + (x^2-15*x-20) * f(x)^4 - (2*x^2-20*x-15) * f(x)^3 - (15*x+6) * f(x)^2 + (2*x^2+6*x+1) * f(x) + x^4 - x^2 - x = 0 [from Klazar]. - Sean A. Irvine, Feb 07 2018

Extensions

a(1) corrected and more terms from Sean A. Irvine, Feb 07 2018

A007859 Number of matchings in rooted plane trees on n nodes.

Original entry on oeis.org

0, 1, 4, 18, 84, 405, 2002, 10101, 51844, 269994, 1423784, 7590044, 40846390, 221650195, 1211606190
Offset: 1

Author

Keywords

A007855 Infima closed sets in rooted plane trees on n nodes.

Original entry on oeis.org

1, 3, 13, 63, 326, 1769, 9964, 57843, 344203, 2090470, 12912988, 80899801, 512896540, 3284651548, 21217493460, 138080484819, 904454380446, 5958186674879, 39448465279220, 262359379484522, 1751912981641794, 11741044418866476
Offset: 1

Author

Keywords

Programs

  • PARI
    my(x='x+O('x^30)); Vec((1/4) * (1+sqrt(1-4*x)) * (1-sqrt(3-2/sqrt(1-4*x)))) \\ Michel Marcus, Apr 05 2019

Formula

G.f.: (1/4) * (1 + sqrt(1-4*x)) * (1 - sqrt(3 - 2 / sqrt(1-4*x))) [from Klazar]. - Sean A. Irvine, Feb 06 2018

Extensions

More terms from Sean A. Irvine, Feb 06 2018

A007856 Subtrees in rooted plane trees on n nodes.

Original entry on oeis.org

1, 3, 12, 52, 236, 1109, 5366, 26639, 135300, 701269, 3700400, 19834973, 107784622, 592705377, 3292970302, 18458954896, 104276682820, 593056996445, 3392898090908, 19512100041995, 112729617387020, 653965783541960, 3807766434556940
Offset: 1

Author

Keywords

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1/8) (1 + 1/Sqrt[1 - 4  x]) (1 + Sqrt[1 - 4  x] - Sqrt[2]  Sqrt[1 - 10  x + Sqrt[1 - 4  x]]), {x, 0, 33}], x]] (* Vincenzo Librandi, Feb 07 2018 *)
    A007856[n_] := ((n-1)/2) CatalanNumber[n-1](1 - Hypergeometric2F1[-1/2, - n, n-1, -4]); Table[A007856[n], {n, 1, 23}] (* Peter Luschny, Aug 04 2019 *)

Formula

G.f.: (1/8) * (1 + 1/sqrt(1-4*x)) * (1 + sqrt(1-4*x) - sqrt(2) * sqrt(1 - 10*x + sqrt(1-4*x))), see Klazar's paper. - Sean A. Irvine, Feb 06 2018
a(n) = ((n - 1)/2)*CatalanNumber(n-1)*(1 - hypergeom([-1/2, -n], [n - 1], -4)). - Peter Luschny, Aug 04 2019

Extensions

More terms from Sean A. Irvine, Feb 06 2018

A007853 Number of maximal antichains in rooted plane trees on n nodes.

Original entry on oeis.org

1, 2, 5, 15, 50, 178, 663, 2553, 10086, 40669, 166752, 693331, 2917088, 12398545, 53164201, 229729439, 999460624, 4374546305, 19250233408, 85120272755, 378021050306, 1685406494673, 7541226435054, 33852474532769, 152415463629568, 688099122024944
Offset: 1

Author

Keywords

Comments

Also the number of initial subtrees (emanating from the root) of rooted plane trees on n vertices, where we require that an initial subtree contains either all or none of the branchings under any given node. The leaves of such a subtree comprise the roots of a corresponding antichain cover. Also, in the (non-commutative) multicategory of free pure multifunctions with one atom, a(n) is the number of composable pairs whose composite has n positions. - Gus Wiseman, Aug 13 2018
The g.f. is denoted by y_2 in Bacher 2004 Proposition 7.5 on page 20. - Michael Somos, Nov 07 2019

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 15*x^4 + 50*x^5 + 178*x^6 + 663*x^7 + 2553*x^8 + ... - _Michael Somos_, Nov 07 2019
		

Programs

  • Mathematica
    ie[t_]:=If[Length[t]==0,1,1+Product[ie[b],{b,t}]];
    allplane[n_]:=If[n==1,{{}},Join@@Function[c,Tuples[allplane/@c]]/@Join@@Permutations/@IntegerPartitions[n-1]];
    Table[Sum[ie[t],{t,allplane[n]}],{n,9}] (* Gus Wiseman, Aug 13 2018 *)
  • Maxima
    a(n):=1/(n+1)*binomial(2*n,n)+sum((k+2)/(n+1)*binomial(2*n-k-1,n-k-1)*(sum(((binomial(2*i,i))*(binomial(k+i,3*i)))/(i+1),i,0,floor(k/2))),k,0,n-1); /* Vladimir Kruchinin, Apr 05 2019 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sqrt(1 - 4*x + x * O(x^n)); polcoeff( (3 - 2*x - A - sqrt(2 - 16*x + 4*x^2 + (2 + 4*x) * A)) / 4, n))}; /* Michael Somos, Nov 07 2019 */

Formula

G.f.: (1/4) * (3 - 2*x - sqrt(1-4*x) - sqrt(2) * sqrt((1+2*x) * sqrt(1-4*x) + 1 - 8*x + 2*x^2)) [from Klazar]. - Sean A. Irvine, Feb 06 2018
a(n) = (1/(n+1))*C(2*n,n) + Sum_{k=0..n-1} ((k+2)/(n+1))*C(2*n-k-1,n-k-1)*Sum_{i=0..floor(k/2)} C(2*i,i)*C(k+i,3*i)/(i+1). - Vladimir Kruchinin, Apr 05 2019
Given the g.f. A(x) and the g.f. of A213705 B(x), then -x = A(-B(x)). - Michael Somos, Nov 07 2019

Extensions

More terms from Sean A. Irvine, Feb 06 2018

A008909 Join 2n points on a line with n arcs above the line; form graph with the arcs as nodes, joining 2 nodes when the arcs cross. a(n) is the number of cases in which the graph is a path.

Original entry on oeis.org

1, 1, 3, 8, 21, 56, 153, 428, 1222, 3549, 10454, 31159, 93801, 284788, 871007, 2681018, 8298932, 25817395, 80674901, 253106836, 796968055, 2517706036, 7977573202, 25347126629, 80738862084, 257778971503, 824798533932, 2644335308021, 8493626448823
Offset: 1

Author

Keywords

Comments

a(n+1) is the number of (finite) positive integer sequences b(1),...,b(k) with b(1) + Sum_{i=1..k-1} (1+max{b(i+1)-b(i), 0}) <= n. - Klaus Strassburger. [E.g., a(4)=8 since the integer sequences are 1; 2; 3; 1,1; 1,2; 2,1; 2,2; 1,1,1.]

Formula

G.f. (conjecture): 1 - G(0)/(1-x), where G(k)= 1 - 1/(1 - x/(1 - x/(1 - x/(1 - x/(x - 1/G(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, Jul 12 2013
G.f. (conjecture): (2*x^3-x^2+2*x-1+sqrt(x^4+2*x^2-4*x+1))/(2*x^2-2*x). - Michael D. Weiner, Dec 17 2019

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Sep 24 2001
More terms from Sean A. Irvine, Apr 10 2018

A007857 Number of independent sets in rooted plane trees on n nodes.

Original entry on oeis.org

1, 2, 8, 37, 184, 959, 5172, 28641, 162008, 932503, 5445934, 32197334, 192357788, 1159603592, 7045356104, 43098733353, 265240985112, 1641100253735, 10202295895890, 63696629668980, 399216722146770, 2510833297584165
Offset: 1

Author

Keywords

Comments

Equals the main diagonal of square array A130523. - Paul D. Hanna, Jun 06 2007
From Petros Hadjicostas, Aug 06 2020: (Start)
To prove R. J. Mathar's conjecture, let b(n) = A007226(n-1) = (2*/n)*binomial(3*(n-1), n-1) and c(n) = A000108(n-1) = binomial(2*(n-1), n-1)/n. Since a(n) = b(n) - c(n), it is enough to prove that each of the sequences (b(n): n >= 1) and (c(n): n >= 1) satisfies the same recurrence as (a(n): n >= 1).
For simplicity, denote the recurrence by f(n,0)*a(n) + f(n,1)*a(n-1) + f(n,2)*a(n-2) + f(n,3)*a(n-3) = 0. Let g(n) = 2*n*(2*n - 3)/(3*(3*n - 4)*(3*n - 5)) and h(n) = n/(2*(2*n - 3)). Then we can easily show that b(n-i) = b(n)* Product_{j=0..i-1} g(n-j) and c(n-i) = c(n)*Product_{j=0..i-1} h(n-j) for i >= 1.
Using a CAS (e.g. PARI), one can show that f(n,0) + f(n,1)*g(n) + f(n,2)*g(n)*g(n-1) + f(n,3)*g(n)*g(n-1)*g(n-2) = 0. Multiplying both sides by b(n), we get f(n,0)*b(n) + f(n,1)*b(n-1) + f(n,2)*b(n-2) + f(n,3)*b(n-3) = 0.
Again, using a CAS, one can show that f(n,0) + f(n,1)*h(n) + f(n,2)*h(n)*h(n-1) + f(n,3)*h(n)*h(n-1)*h(n-2) = 0. Multiplying both sides by c(n), we get f(n,0)*c(n) + f(n,1)*c(n-1) + f(n,2)*c(n-2) + f(n,3)*c(n-3) = 0. (End)

Crossrefs

Programs

Formula

a(n+1) = (2/(n+1))*C(3*n, n) - (1/(n+1))*C(2*n, n) = A007226(n) - A000108(n). - Paul Barry, Nov 05 2006
G.f.: A(x) = x/(1 - x*C(x)*F(x) - x*F(x)^2), where C(x) is g.f. of the Catalan numbers (A000108) (i.e., C(x) = 1 + x*C(x)^2) and F(x) is the g.f. of ternary numbers (A001764) (i.e., F(x) = 1 + x*F(x)^3). - Paul D. Hanna, Jun 06 2007
Conjecture: 2*n*(n - 1)*(2*n - 3)*(44*n - 69)*a(n) + (n - 1)*(176*n^3 - 9591*n^2 + 38703*n - 40640)*a(n-1) + (-17479*n^4 + 218005*n^3 - 959616*n^2 + 1797890*n - 1221920)*a(n-2) + 6*(3*n - 10)*(2*n - 7)*(3*n - 11)*(517*n - 1198)*a(n-3) = 0 for n >= 4. - R. J. Mathar, Nov 26 2012

Extensions

More terms from Paul Barry, Nov 05 2006

A007858 G.f. is 1 - 1/f(x), where f(x) = 1+x+3*x^2+9*x^3+32*x^4+... is 1/x times g.f. for A063020.

Original entry on oeis.org

1, 2, 4, 13, 44, 164, 636, 2559, 10556, 44440, 190112, 824135, 3612244, 15981632, 71277736, 320121747, 1446537564, 6571858168, 30000766128, 137544893940, 633051803120, 2923867281660, 13547594977500, 62955434735505, 293336372858724, 1370149533359784, 6414423856436816
Offset: 1

Author

Martin Klazar, Mar 15 1996

Keywords

Comments

Number of maximal independent sets in rooted plane trees on n nodes. - Olivier Gérard, Jul 05 2001

Crossrefs

Cf. A000108.

Programs

  • Maple
    series(1-x/RootOf(Z-_Z^2-_Z^3+_Z^4-x), x=0,20); # _Mark van Hoeij, May 28 2013
  • Mathematica
    Rest[CoefficientList[1-x/InverseSeries[Series[x-x^2-x^3+x^4, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Nov 14 2014 *)
    Table[Sum[Binomial[n + k, k]/(n + k)*Sum[(Binomial[j, n - k - j + 1]*Binomial[k, j]*(-1)^(n + k - j + 1)), {j, 0, k}], {k, 1, n}] + CatalanNumber[n], {n, 0, 50}] (* G. C. Greubel, Feb 15 2017 *)
  • Maxima
    a(n):=sum(binomial(n+k,k)/(n+k)*sum(binomial(j,n-k-j+1)*binomial(k,j)*(-1)^(n+k-j+1),j,0,k),k,1,n)+1/(n+1)*binomial(2*n,n); /* Vladimir Kruchinin, Nov 13 2014 */
  • PARI
    my(x='x+O('x^66)); Vec(1-x/serreverse(x-x^2-x^3+x^4)) \\ Joerg Arndt, May 28 2013
    

Formula

a(n+1) = Sum_{k = 1..n} ( binomial(n+k,k)/(n+k)*Sum_{j = 0..k} ( binomial(j,n-k-j+1)*binomial(k,j)*(-1)^(n+k-j+1) ) ) + C(n), where C(n) is a Catalan number. - Vladimir Kruchinin, Nov 13 2014
Recurrence: 16*(n-1)*n*(2*n-3)*(17*n^2 - 81*n + 96)*a(n) = (n-1)*(1819*n^4 - 14124*n^3 + 40377*n^2 - 50320*n + 23040)*a(n-1) + 8*(2*n-5)*(4*n-11)*(4*n-9)*(17*n^2 - 47*n + 32)*a(n-2). - Vaclav Kotesovec, Nov 14 2014
Asymptotics (Klazar, 1997): a(n) ~ sqrt(5731-4635/sqrt(17)) * ((107+51*sqrt(17))/64)^n / (256 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 14 2014