Martin Klazar has authored 12 sequences. Here are the ten most recent ones:
A081054
Crossing matchings: linear chord diagrams with 2n nodes and n arcs in which each arc crosses another arc.
Original entry on oeis.org
1, 0, 1, 4, 31, 288, 3272, 43580, 666143, 11491696, 220875237, 4681264432, 108475235444, 2728591657920, 74051386322580, 2156865088819692, 67113404608820943, 2221948578439255200, 77990056655776149179
Offset: 0
The 4 crossing matchings on nodes 1, 2, ..., 6 are {13, 25, 46}, {14, 25, 36}, {15, 24, 36} and {14, 26, 35}.
- Olivia Beckwith, Victor Luo, Stephen J. Miller, Karen Shen, Nicholas Triantafillou, Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles, arXiv:1112.3719 [math.PR], 2011-2012.
- Olivia Beckwith, Victor Luo, Stephen J. Miller, Karen Shen, Nicholas Triantafillou, Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles, Electronic Journal of Combinatorial Number Theory, Volume 15 (2015) #A21.
- M. Klazar, Non-P-recursiveness of numbers of matchings or linear chord diagrams with many crossings, Advances in Appl. Math., Vol. 30 (2003), pp. 126-136.
- Alexander Stoimenow, On enumeration of chord diagrams and asymptotics of Vassiliev invariants, Dissertation, Mathematik und Informatik, University of Berlin, 1998; see chapter 3.
-
a[n_] := a[n]=Module[{x, y, z, i}, y=Sum[a[i]x^i, {i, 0, n-1}]+z*x^n+O[x]^(n+1); Solve[D[y, x]==(-1+y-x^2y^3)/(2x^2y(1+x*y)), z][[1, 1, 2]]]
A008910
Join 2n points on a line with n arcs above the line; form graph with the arcs as nodes, joining 2 nodes when the arcs cross. a(n) is the number of cases in which the graph is symmetric about middle and has no isolated nodes.
Original entry on oeis.org
0, 1, 2, 9, 26, 122, 466, 2299, 10316, 54179
Offset: 1
klazar(AT)kam.mff.cuni.cz (Martin Klazar)
A007860
Maximal matchings in rooted plane trees on n nodes.
Original entry on oeis.org
1, 1, 4, 12, 44, 175, 718, 3052, 13308, 59139, 266974, 1220879, 5643562, 26327769, 123793450, 586078393, 2791408028, 13365916545, 64302770488, 310672722803, 1506737267266, 7332920012492, 35800278685252, 175286440178448, 860517328379634, 4234766396436095
Offset: 1
Martin Klazar (klazar(AT)kam.mff.cuni.cz)
A007859
Number of matchings in rooted plane trees on n nodes.
Original entry on oeis.org
0, 1, 4, 18, 84, 405, 2002, 10101, 51844, 269994, 1423784, 7590044, 40846390, 221650195, 1211606190
Offset: 1
A007855
Infima closed sets in rooted plane trees on n nodes.
Original entry on oeis.org
1, 3, 13, 63, 326, 1769, 9964, 57843, 344203, 2090470, 12912988, 80899801, 512896540, 3284651548, 21217493460, 138080484819, 904454380446, 5958186674879, 39448465279220, 262359379484522, 1751912981641794, 11741044418866476
Offset: 1
A007856
Subtrees in rooted plane trees on n nodes.
Original entry on oeis.org
1, 3, 12, 52, 236, 1109, 5366, 26639, 135300, 701269, 3700400, 19834973, 107784622, 592705377, 3292970302, 18458954896, 104276682820, 593056996445, 3392898090908, 19512100041995, 112729617387020, 653965783541960, 3807766434556940
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- G.-S. Cheon, H. Kim, L. W. Shapiro, Mutation effects in ordered trees, arXiv preprint arXiv:1410.1249 [math.CO], 2014.
- M. Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740.
- Index entries for sequences related to rooted trees
-
Rest[CoefficientList[Series[(1/8) (1 + 1/Sqrt[1 - 4 x]) (1 + Sqrt[1 - 4 x] - Sqrt[2] Sqrt[1 - 10 x + Sqrt[1 - 4 x]]), {x, 0, 33}], x]] (* Vincenzo Librandi, Feb 07 2018 *)
A007856[n_] := ((n-1)/2) CatalanNumber[n-1](1 - Hypergeometric2F1[-1/2, - n, n-1, -4]); Table[A007856[n], {n, 1, 23}] (* Peter Luschny, Aug 04 2019 *)
A007853
Number of maximal antichains in rooted plane trees on n nodes.
Original entry on oeis.org
1, 2, 5, 15, 50, 178, 663, 2553, 10086, 40669, 166752, 693331, 2917088, 12398545, 53164201, 229729439, 999460624, 4374546305, 19250233408, 85120272755, 378021050306, 1685406494673, 7541226435054, 33852474532769, 152415463629568, 688099122024944
Offset: 1
G.f. = x + 2*x^2 + 5*x^3 + 15*x^4 + 50*x^5 + 178*x^6 + 663*x^7 + 2553*x^8 + ... - _Michael Somos_, Nov 07 2019
-
ie[t_]:=If[Length[t]==0,1,1+Product[ie[b],{b,t}]];
allplane[n_]:=If[n==1,{{}},Join@@Function[c,Tuples[allplane/@c]]/@Join@@Permutations/@IntegerPartitions[n-1]];
Table[Sum[ie[t],{t,allplane[n]}],{n,9}] (* Gus Wiseman, Aug 13 2018 *)
-
a(n):=1/(n+1)*binomial(2*n,n)+sum((k+2)/(n+1)*binomial(2*n-k-1,n-k-1)*(sum(((binomial(2*i,i))*(binomial(k+i,3*i)))/(i+1),i,0,floor(k/2))),k,0,n-1); /* Vladimir Kruchinin, Apr 05 2019 */
-
{a(n) = my(A); if( n<0, 0, A = sqrt(1 - 4*x + x * O(x^n)); polcoeff( (3 - 2*x - A - sqrt(2 - 16*x + 4*x^2 + (2 + 4*x) * A)) / 4, n))}; /* Michael Somos, Nov 07 2019 */
A008909
Join 2n points on a line with n arcs above the line; form graph with the arcs as nodes, joining 2 nodes when the arcs cross. a(n) is the number of cases in which the graph is a path.
Original entry on oeis.org
1, 1, 3, 8, 21, 56, 153, 428, 1222, 3549, 10454, 31159, 93801, 284788, 871007, 2681018, 8298932, 25817395, 80674901, 253106836, 796968055, 2517706036, 7977573202, 25347126629, 80738862084, 257778971503, 824798533932, 2644335308021, 8493626448823
Offset: 1
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Sep 24 2001
A007857
Number of independent sets in rooted plane trees on n nodes.
Original entry on oeis.org
1, 2, 8, 37, 184, 959, 5172, 28641, 162008, 932503, 5445934, 32197334, 192357788, 1159603592, 7045356104, 43098733353, 265240985112, 1641100253735, 10202295895890, 63696629668980, 399216722146770, 2510833297584165
Offset: 1
A007858
G.f. is 1 - 1/f(x), where f(x) = 1+x+3*x^2+9*x^3+32*x^4+... is 1/x times g.f. for A063020.
Original entry on oeis.org
1, 2, 4, 13, 44, 164, 636, 2559, 10556, 44440, 190112, 824135, 3612244, 15981632, 71277736, 320121747, 1446537564, 6571858168, 30000766128, 137544893940, 633051803120, 2923867281660, 13547594977500, 62955434735505, 293336372858724, 1370149533359784, 6414423856436816
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Martin Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740.
- A. Mironov and A. Morozov, Algebra of quantum C-polynomials, arXiv:2009.11641 [hep-th], 2020.
- Index entries for sequences related to rooted trees
-
series(1-x/RootOf(Z-_Z^2-_Z^3+_Z^4-x), x=0,20); # _Mark van Hoeij, May 28 2013
-
Rest[CoefficientList[1-x/InverseSeries[Series[x-x^2-x^3+x^4, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Nov 14 2014 *)
Table[Sum[Binomial[n + k, k]/(n + k)*Sum[(Binomial[j, n - k - j + 1]*Binomial[k, j]*(-1)^(n + k - j + 1)), {j, 0, k}], {k, 1, n}] + CatalanNumber[n], {n, 0, 50}] (* G. C. Greubel, Feb 15 2017 *)
-
a(n):=sum(binomial(n+k,k)/(n+k)*sum(binomial(j,n-k-j+1)*binomial(k,j)*(-1)^(n+k-j+1),j,0,k),k,1,n)+1/(n+1)*binomial(2*n,n); /* Vladimir Kruchinin, Nov 13 2014 */
-
my(x='x+O('x^66)); Vec(1-x/serreverse(x-x^2-x^3+x^4)) \\ Joerg Arndt, May 28 2013
Comments