A130523 Square array, read by antidiagonals, where row n+1 equals the partial sums of the previous row after removing the n-th term from row n for n>=0, with row 0 equal to all 1's.
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 8, 4, 1, 1, 6, 18, 13, 5, 1, 1, 7, 24, 37, 19, 6, 1, 1, 8, 31, 87, 63, 26, 7, 1, 1, 9, 39, 118, 184, 97, 34, 8, 1, 1, 10, 48, 157, 442, 324, 140, 43, 9, 1, 1, 11, 58, 205, 599, 959, 517, 193, 53, 10, 1, 1, 12, 69, 263, 804, 2332, 1733, 774, 257, 64, 11
Offset: 0
Examples
Square array begins: (1), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...; 1, (2), 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...; 1, 4, (8), 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, 134, ...; 1, 5, 18, (37), 63, 97, 140, 193, 257, 333, 422, 525, 643, 777, ...; 1, 6, 24, 87, (184), 324, 517, 774, 1107, 1529, 2054, 2697, 3474, ...; 1, 7, 31, 118, 442, (959), 1733, 2840, 4369, 6423, 9120, 12594, ...; 1, 8, 39, 157, 599, 2332, (5172), 9541, 15964, 25084, 37678, ...; 1, 9, 48, 205, 804, 3136, 12677, (28641), 53725, 91403, 146077, ...; 1, 10, 58, 263, 1067, 4203, 16880, 70605, (162008), 308085, ...; 1, 11, 69, 332, 1399, 5602, 22482, 93087, 401172, (932503), ...; ... For each row, remove the term along the diagonal (in parenthesis here), and then take partial sums to obtain the next row.
Programs
-
PARI
{T(n,k) = if(n<0||k<0,0,if(n==0,1,if(n>k+1, T(n,k-1) + T(n-1,k), T(n,k-1) + T(n-1,k+1))))} for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
-
PARI
/* Using Formula for G.F.: */ {T(n,k) = local(m=max(n,k)+1,C,F,D); C=subst(Ser(vector(m,r,binomial(2*r-2,r-1)/r)),x,x*y); F=subst(Ser(vector(m,r,binomial(3*r-3,r-1)/(2*r-1))),x,x*y); D=1/(1-x*y*C*F-x*y*F^2);A=D*(1/(1-y*F) + x*C*F/(1-x*C)); polcoeff(polcoeff(A+O(x^m),n,x)+O(y^m),k,y)} for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
Comments