1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 6, 10, 4, 1, 1, 7, 29, 16, 5, 1, 1, 8, 36, 60, 23, 6, 1, 1, 9, 44, 186, 100, 31, 7, 1, 1, 10, 53, 230, 397, 150, 40, 8, 1, 1, 11, 63, 283, 1281, 681, 211, 50, 9, 1, 1, 12, 74, 346, 1564, 2802, 1051, 284, 61, 10, 1, 1, 13, 86, 420, 1910, 9294, 4908
Offset: 0
Square array begins:
(1),(1), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1,(2),(3), 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...;
1, 5,(10),(16), 23, 31, 40, 50, 61, 73, 86, 100, 115, 131, 148, ...;
1, 6, 29,(60),(100), 150, 211, 284, 370, 470, 585, 716, 864, ...;
1, 7, 36, 186,(397),(681), 1051, 1521, 2106, 2822, 3686, 4716, ...;
1, 8, 44, 230, 1281,(2802),(4908), 7730, 11416, 16132, 22063, ...;
1, 9, 53, 283, 1564, 9294,(20710),(36842), 58905, 88319, 126730, ...;
1, 10, 63, 346, 1910, 11204, 70109,(158428),(285158), 461190, ...;
1, 11, 74, 420, 2330, 13534, 83643, 544833,(1244413),(2260257), ...;
...
For each row, remove the terms along the diagonals (in parenthesis),
and then take partial sums to obtain the next row.
GENERATING FUNCTIONS.
The g.f. of n-th lower diagonal equals D(x)*F(x)^2*C(x)^n and
the g.f. of n-th upper diagonal equals D(x)*F(x)^n,
where D(x) is g.f. of main diagonal (A137571):
[1, 2, 10, 60, 397, 2802, 20710, 158428, 1244413, 9980220, ...]
defined by:
D(x) = 1/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where
C(x) = 1 + x*C(x)^2 is g.f. of Catalan numbers (A000108):
[1, 1, 2, 5, 14, 42, 132, 429, 1430, ..., C(2*n,n)/(n+1), ...] and
F(x) = 1 + x*F(x)^4 is g.f. of A002293:
[1, 1, 4, 22, 140, 969, 7084, 53820, ..., C(4*n,n)/(3*n+1), ...].
Comments