cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A137571 Main diagonal of square array A137570.

Original entry on oeis.org

1, 2, 10, 60, 397, 2802, 20710, 158428, 1244413, 9980220, 81394123, 672998498, 5628741195, 47535483498, 404790717079, 3471892750622, 29966295451511, 260080708564964, 2268416956569463, 19872441881999354, 174783803353387498
Offset: 0

Views

Author

Paul D. Hanna, Jan 27 2008

Keywords

Comments

A variant is A007857, the number of independent sets in rooted plane trees on n nodes.

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 397*x^4 + 2802*x^5 +...;
A(x) = 1/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where
C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108):
[1, 1, 2, 5, 14, 42, 132, 429, 1430, ..., C(2n,n)/(n+1), ...] and
F(x) = 1 + xF(x)^4 is g.f. of A002293:
[1, 1, 4, 22, 140, 969, 7084, 53820, ..., C(4n,n)/(3n+1), ...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(m=n+1,C,F,A); C=Ser(vector(m,r,binomial(2*r-2,r-1)/r)); F=Ser(vector(m,r,binomial(4*r-4,r-1)/(3*r-2))); A=1/(1-x*C*F^2-x*F^3);polcoeff(A+O(x^m),n,x)}

Formula

G.f. A(x) = 1/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108) and F(x) = 1 + xF(x)^4 is g.f. of A002293.

A137572 The first upper diagonal of square array A137570; equals the convolution of the main diagonal A137571 with A002293.

Original entry on oeis.org

1, 3, 16, 100, 681, 4908, 36842, 285158, 2260257, 18257902, 149769225, 1244277499, 10448404901, 88538107802, 756153001241, 6501989278168, 56244305146039, 489111092027854, 4273491476147117, 37496699100314116, 330261353255659842
Offset: 0

Views

Author

Paul D. Hanna, Jan 27 2008

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 16*x^2 + 100*x^3 + 681*x^4 + 4908*x^5 +...;
A(x) = F(x)/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where
C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108):
[1, 1, 2, 5, 14, 42, 132, 429, 1430, ..., C(2n,n)/(n+1), ...] and
F(x) = 1 + xF(x)^4 is g.f. of A002293:
[1, 1, 4, 22, 140, 969, 7084, 53820, ..., C(4n,n)/(3n+1), ...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(m=n+1,C,F,A); C=Ser(vector(m,r,binomial(2*r-2,r-1)/r)); F=Ser(vector(m,r,binomial(4*r-4,r-1)/(3*r-2))); A=F/(1-x*C*F^2-x*F^3);polcoeff(A+O(x^m),n,x)}

Formula

G.f. A(x) = F(x)/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108) and F(x) = 1 + xF(x)^4 is g.f. of A002293.

A137573 The first lower diagonal in square array A137570; equals the convolution of the main diagonal A137571 with the Catalan numbers (A000108) and with the square of A002293.

Original entry on oeis.org

1, 5, 29, 186, 1281, 9294, 70109, 544833, 4333381, 35108351, 288738813, 2404256945, 20228988678, 171716799066, 1468804301441, 12647321103329, 109538312419238, 953622158606749, 8340394595266367, 73247287493299642
Offset: 0

Views

Author

Paul D. Hanna, Jan 27 2008

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 29*x^2 + 186*x^3 + 1281*x^4 + 9294*x^5 +...;
A(x) = C(x)*F(x)^2/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where
C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108):
[1, 1, 2, 5, 14, 42, 132, 429, 1430, ..., C(2n,n)/(n+1), ...] and
F(x) = 1 + xF(x)^4 is g.f. of A002293:
[1, 1, 4, 22, 140, 969, 7084, 53820, ..., C(4n,n)/(3n+1), ...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(m=n+1,C,F,A); C=Ser(vector(m,r,binomial(2*r-2,r-1)/r)); F=Ser(vector(m,r,binomial(4*r-4,r-1)/(3*r-2))); A=C*F^2/(1-x*C*F^2-x*F^3);polcoeff(A+O(x^m),n,x)}

Formula

G.f. A(x) = C(x)*F(x)^2/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108) and F(x) = 1 + xF(x)^4 is g.f. of A002293.
Showing 1-3 of 3 results.