A038765 Next-to-last diagonal of A024462.
1, 2, 7, 24, 81, 270, 891, 2916, 9477, 30618, 98415, 314928, 1003833, 3188646, 10097379, 31886460, 100442349, 315675954, 990074583, 3099363912, 9685512225, 30218798142, 94143178827, 292889889684, 910050728661, 2824295364810
Offset: 0
References
- S. J. Cyvin et al., Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Maths.SE, Number of different counts of 1s in sliding windows.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
Crossrefs
Cf. A024462.
Programs
-
Magma
[1] cat [3^(n-2)*(n+5): n in [1..30]]; // Vincenzo Librandi, Oct 22 2013
-
Maple
seq(ceil(1/9*3^n*(5+n)),n=0..50);
-
Mathematica
CoefficientList[Series[(1 - 2 x)^2/(1 - 3 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 22 2013 *) LinearRecurrence[{6,-9},{1,2,7},30] (* Harvey P. Dale, Jul 04 2018 *)
Formula
G.f.: (1-2*x)^2/(1-3*x)^2. [Detlef Pauly (dettodet(AT)yahoo.de), Mar 03 2003]
a(n) = 6*a(n-1)-9*a(n-2) for n>2. a(n) = 3^(n-2)*(n+5) for n>0. [Colin Barker, Jun 25 2012]
Extensions
More terms from James Sellers, May 03 2000
Comments