cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A038765 Next-to-last diagonal of A024462.

Original entry on oeis.org

1, 2, 7, 24, 81, 270, 891, 2916, 9477, 30618, 98415, 314928, 1003833, 3188646, 10097379, 31886460, 100442349, 315675954, 990074583, 3099363912, 9685512225, 30218798142, 94143178827, 292889889684, 910050728661, 2824295364810
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

If w is a binary string of length 2n-1 and v(w) is a vector of the Hamming weights of each substring of length n, then a(n) is the number of distinct v(w) for all possible w. - Orson R. L. Peters, Jun 01 2017

References

  • S. J. Cyvin et al., Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.

Crossrefs

Cf. A024462.

Programs

  • Magma
    [1] cat [3^(n-2)*(n+5): n in [1..30]]; // Vincenzo Librandi, Oct 22 2013
  • Maple
    seq(ceil(1/9*3^n*(5+n)),n=0..50);
  • Mathematica
    CoefficientList[Series[(1 - 2 x)^2/(1 - 3 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 22 2013 *)
    LinearRecurrence[{6,-9},{1,2,7},30] (* Harvey P. Dale, Jul 04 2018 *)

Formula

G.f.: (1-2*x)^2/(1-3*x)^2. [Detlef Pauly (dettodet(AT)yahoo.de), Mar 03 2003]
a(n) = 6*a(n-1)-9*a(n-2) for n>2. a(n) = 3^(n-2)*(n+5) for n>0. [Colin Barker, Jun 25 2012]

Extensions

More terms from James Sellers, May 03 2000

A038764 a(n) = (9*n^2 + 3*n + 2)/2.

Original entry on oeis.org

1, 7, 22, 46, 79, 121, 172, 232, 301, 379, 466, 562, 667, 781, 904, 1036, 1177, 1327, 1486, 1654, 1831, 2017, 2212, 2416, 2629, 2851, 3082, 3322, 3571, 3829, 4096, 4372, 4657, 4951, 5254, 5566, 5887, 6217, 6556, 6904, 7261, 7627, 8002, 8386, 8779, 9181
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

Coefficients of x^2 of certain rook polynomials (for n>=1; see p. 18 of the Riordan paper). - Emeric Deutsch, Mar 08 2004
a(n) is also the least weight of self-conjugate partitions having n+1 different parts such that each part is congruent to 1 modulo 3. The first such self-conjugate partitions, corresponding to a(n) = 0, 1, 2, 3, are 1, 4+3, 7+4+4+4+3, 10+7+7+7+4+4+4+3. - Augustine O. Munagi, Dec 18 2008

References

  • J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.

Crossrefs

Reflection of A060544 in A081272.
Second column of A024462. Also = A064641(n+1, 2).
Shallow diagonal of triangular spiral in A051682.
Partial sums of A122709.

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 7, 22}, 50] (* Paolo Xausa, Jul 03 2025 *)
  • PARI
    a(n)=n*(9*n+3)/2+1 \\ Charles R Greathouse IV, Jun 17 2017
    
  • PARI
    Vec((1 + 2*x)^2 / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jan 22 2018
  • Sage
    a = lambda n: hypergeometric([-n, -2], [1], 3)
    print([simplify(a(n)) for n in range(46)]) # Peter Luschny, Nov 19 2014
    

Formula

a(n) = binomial(n,0) + 6*binomial(n,1) + 9*binomial(n,2).
From Paul Barry, Mar 15 2003: (Start)
G.f.: (1 + 2*x)^2/(1 - x)^3.
Binomial transform of (1, 6, 9, 0, 0, 0, ...). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Colin Barker, Jan 22 2018
a(n) = a(n-1) + 3*(3*n-1) for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
a(n) = hypergeometric([-n, -2], [1], 3). - Peter Luschny, Nov 19 2014
E.g.f.: exp(x)*(2 + 12*x + 9*x^2)/2. - Stefano Spezia, Mar 07 2023

Extensions

More terms from James Sellers, May 03 2000
Entry revised by N. J. A. Sloane, Jan 23 2018

A038763 Triangular matrix arising in enumeration of catafusenes, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 7, 15, 9, 1, 10, 36, 54, 27, 1, 13, 66, 162, 189, 81, 1, 16, 105, 360, 675, 648, 243, 1, 19, 153, 675, 1755, 2673, 2187, 729, 1, 22, 210, 1134, 3780, 7938, 10206, 7290, 2187, 1, 25, 276, 1764, 7182, 19278, 34020, 37908, 24057, 6561, 1, 28, 351, 2592, 12474, 40824, 91854, 139968, 137781, 78732, 19683
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
Triangle read by rows, n-th row = X^(n-1) * [1, 1, 0, 0, 0, ...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (3,3,3,...) in the subdiagonal; given row 0 = 1. - Gary W. Adamson, Jul 19 2008
Fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(2x+1)^n; see A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. - Clark Kimberling, Aug 04 2011

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  7,  15,   9;
  1, 10,  36,  54,   27;
  1, 13,  66, 162,  189,   81;
  1, 16, 105, 360,  675,  648,  243;
  1, 19, 153, 675, 1755, 2673, 2187, 729;
		

Crossrefs

Programs

  • Magma
    A038763:= func< n,k | n eq 0 select 1 else 3^(k-1)*(3*n-2*k)*Binomial(n,k)/n >;
    [A038763(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 27 2023
    
  • Mathematica
    A038763[n_,k_]:= If[n==0, 1, 3^(k-1)*(3*n-2*k)*Binomial[n,k]/n];
    Table[A038763[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 27 2023 *)
  • PARI
    T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); T(n-1,k) + 3*T(n-1,k-1);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jul 25 2023
    
  • SageMath
    def A038763(n,k): return 1 if (n==0) else 3^(k-1)*(3*n-2*k)*binomial(n,k)/n
    flatten([[A038763(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 27 2023

Formula

T(n, 0)=1; T(1, 1)=1; T(n, k)=0 for k>n; T(n, k) = T(n-1, k-1)*3 + T(n-1, k) for n >= 2.
Sum_{k=0..n} T(n,k) = A081294(n). - Philippe Deléham, Sep 22 2006
T(n, k) = A136158(n, n-k). - Philippe Deléham, Dec 17 2007
G.f.: (1-2*x*y)/(1-(3*y+1)*x). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 27 2023: (Start)
T(n, 0) = A000012(n).
T(n, 1) = A016777(n-1).
T(n, 2) = A062741(n-1).
T(n, 3) = 9*A002411(n-2).
T(n, 4) = 27*A001296(n-3).
T(n, 5) = 81*A051836(n-4).
T(n, n) = A133494(n).
T(n, n-1) = A006234(n+2).
T(n, n-2) = A080420(n-2).
T(n, n-3) = A080421(n-3).
T(n, n-4) = A080422(n-4).
T(n, n-5) = A080423(n-5).
T(2*n, n) = 4*A098399(n-1) + (2/3)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006138(n-1) + (2/3)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A110523(n-1) + (4/3)*[n=0]. (End)

Extensions

More terms from Michel Marcus, Jul 25 2023

A081892 Second binomial transform of C(n+2,2).

Original entry on oeis.org

1, 5, 22, 90, 351, 1323, 4860, 17496, 61965, 216513, 747954, 2558790, 8680203, 29229255, 97785144, 325241892, 1076168025, 3544180029, 11622614670, 37967207922, 123587135991, 400980206115, 1297083797172, 4184141281200
Offset: 0

Views

Author

Paul Barry, Mar 30 2003

Keywords

Comments

Binomial transform of A049611(n+1).
2nd binomial transform of C(n+2,2), A000217.
3rd binomial transform of (1,2,1,0,0,0,.....)

Crossrefs

Cf. A081893.
A right-edge column of triangle A024462.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x)^2/(1-3*x)^3)); // G. C. Greubel, Oct 18 2018
  • Mathematica
    LinearRecurrence[{9, -27, 27}, {1, 5, 22}, 50] (* G. C. Greubel, Oct 18 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)^2/(1-3*x)^3) \\ G. C. Greubel, Oct 18 2018
    

Formula

a(n) = 3^(n - 2)*(n + 2)*(n + 9)/2 = 3^n*(n^2 + 11*n + 18)/18.
G.f.: (1 - 2*x)^2/(1 - 3*x)^3.
E.g.f.: (2 + 4*x + x^2)*exp(3*x)/2. - G. C. Greubel, Oct 18 2018

A323943 Trapezoidal matrix T(n,k) (n>=1, 1<=k<=n+2) read by rows, arising in enumeration of unbranched k-4-catafusenes.

Original entry on oeis.org

1, 2, 1, 3, 7, 5, 1, 9, 24, 22, 8, 1, 27, 81, 90, 46, 11, 1, 81, 270, 351, 228, 79, 14, 1, 243, 891, 1323, 1035, 465, 121, 17, 1, 729, 2916, 4860, 4428, 2430, 828, 172, 20, 1, 2187, 9477, 17496, 18144, 11718, 4914, 1344, 232, 23, 1, 6561, 30618, 61965, 71928, 53298, 26460, 8946, 2040, 301, 26, 1, 19683
Offset: 1

Views

Author

N. J. A. Sloane, Feb 09 2019

Keywords

Comments

Rows sums are powers of 4.

Examples

			Matrix begins:
1, 2, 1,
3, 7, 5, 1,
9, 24, 22, 8, 1,
27, 81, 90, 46, 11, 1,
81, 270, 351, 228, 79, 14, 1,
...
		

Crossrefs

Cf. A024462 (reversed rows).
Cf. A000244 (column 1), A038765 (column 2), A081892 (column 3)

Programs

  • Maple
    A323943 := proc(n,k)
        option remember;
        if n = 1 then
            if k>=1 and k<=3 then
                op(k,[1,2,1]) ;
            else
                0;
            end if;
        else
            3*procname(n-1,k)+procname(n-1,k-1) ;
        end if;
    end proc:
    seq(seq(A323943(n,k),k=1..n+2),n=1..12) ; # R. J. Mathar, May 08 2019
  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 1, If[k >= 1 && k <= 3, {1, 2, 1}[[k]], 0], 3*T[n - 1, k] + T[n - 1, k - 1]];
    Table[Table[T[n, k], {k, 1, n + 2}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Nov 08 2023, after R. J. Mathar *)

Formula

T(1,1)=T(1,3)=1, T(1,2)=2; thereafter T(n+1,k) = 3*T(n,k)+T(n,k-1).
Showing 1-5 of 5 results.