cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081267 Diagonal of triangular spiral in A051682.

Original entry on oeis.org

1, 9, 26, 52, 87, 131, 184, 246, 317, 397, 486, 584, 691, 807, 932, 1066, 1209, 1361, 1522, 1692, 1871, 2059, 2256, 2462, 2677, 2901, 3134, 3376, 3627, 3887, 4156, 4434, 4721, 5017, 5322, 5636, 5959, 6291, 6632, 6982, 7341, 7709, 8086, 8472, 8867, 9271
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Binomial transform of (1, 8, 9, 0, 0, 0, ...).

Crossrefs

Cf. A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.

Programs

Formula

a(n) = C(n, 0) + 8*C(n, 1) + 9*C(n, 2).
a(n) = (9*n^2 + 7*n + 2)/2.
G.f.: (1 + 6*x + 2*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), for n > 2. a(n) = right term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 0 0 / 3 1 0 / 5 3 1]. M^n * [1 1 1] = [1 3n+1 a(n)]. - Gary W. Adamson, Dec 22 2004
a(n) = 9*n + a(n-1) - 1 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = (n+1)*A000326(n+1) - (n)*A000326(n). - Bruno Berselli, Dec 10 2012
a(n) = A050509(n) - A050509(n-1). - Bill McEachen, Nov 01 2020
E.g.f.: exp(x)*(2 + 16*x + 9*x^2)/2. - Stefano Spezia, Dec 25 2022

A064226 a(n) = (9*n^2 + 13*n + 6)/2.

Original entry on oeis.org

3, 14, 34, 63, 101, 148, 204, 269, 343, 426, 518, 619, 729, 848, 976, 1113, 1259, 1414, 1578, 1751, 1933, 2124, 2324, 2533, 2751, 2978, 3214, 3459, 3713, 3976, 4248, 4529, 4819, 5118, 5426, 5743, 6069, 6404, 6748, 7101, 7463, 7834, 8214, 8603, 9001, 9408, 9824
Offset: 0

Views

Author

N. J. A. Sloane, Sep 22 2001

Keywords

Comments

Diagonal of triangular spiral in A051682. - Paul Barry, Mar 15 2003
Ehrhart polynomial of open quadrilateral with vertices (0,2),(2,3),(3,1),(2,0). - Michael Somos, Jul 22 2006

Crossrefs

Programs

  • Magma
    I:=[3,14,34]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 19 2015
  • Maple
    A064226:=n-> (9*n^2 + 13*n + 6) / 2; seq(A064226(n), n=0..50); # Wesley Ivan Hurt, May 08 2014
  • Mathematica
    Table[(9 n^2 + 13 n + 6)/2, {n, 0, 50}] (* Wesley Ivan Hurt, May 08 2014 *)
    LinearRecurrence[{3, -3, 1}, {3, 14, 34}, 50] (* Vincenzo Librandi, Jul 19 2015 *)
  • PARI
    {a(n) = 3 + n * (9*n + 13) / 2}; /* Michael Somos, Jul 22 2006 */
    

Formula

From Paul Barry, Mar 15 2003: (Start)
a(n) = 3*C(n,0) + 11*C(n,1) + 9*C(n,2); binomial transform of (3, 11, 9, 0, 0, 0, ...).
G.f.: (3 + 5*x + x^2)/(1-x)^3.
a(n) = A081268(n) + 2. (End)
A064225(n) = a(-1-n). - Michael Somos, Jul 22 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Apr 16 2023
E.g.f.: (3 + 11*x + 9*x^2/2)*exp(x). - Elmo R. Oliveira, Oct 21 2024

A081270 Diagonal of triangular spiral in A051682.

Original entry on oeis.org

3, 16, 38, 69, 109, 158, 216, 283, 359, 444, 538, 641, 753, 874, 1004, 1143, 1291, 1448, 1614, 1789, 1973, 2166, 2368, 2579, 2799, 3028, 3266, 3513, 3769, 4034, 4308, 4591, 4883, 5184, 5494, 5813, 6141, 6478, 6824, 7179, 7543, 7916, 8298, 8689, 9089, 9498, 9916
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A064226(n) + 2*n.
a(n) = 3*binomial(n,0) + 13*binomial(n,1) + 9*binomial(n,2); binomial transform of (3, 13, 9, 0, 0, 0, ...).
a(n) = (9*n^2 + 17*n + 6)/2.
G.f.: (3 + 7*x - x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
E.g.f.: exp(x)*(6 + 26*x + 9*x^2)/2. - Elmo R. Oliveira, Nov 13 2024

A198392 a(n) = (6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16 + 1.

Original entry on oeis.org

2, 4, 12, 18, 31, 41, 59, 73, 96, 114, 142, 164, 197, 223, 261, 291, 334, 368, 416, 454, 507, 549, 607, 653, 716, 766, 834, 888, 961, 1019, 1097, 1159, 1242, 1308, 1396, 1466, 1559, 1633, 1731, 1809, 1912, 1994, 2102, 2188, 2301, 2391, 2509, 2603, 2726, 2824, 2952
Offset: 0

Views

Author

Bruno Berselli, Oct 25 2011

Keywords

Comments

For an origin of this sequence, see the triangular spiral illustrated in the Links section.
First bisection gives A117625 (without the initial term).

Crossrefs

Cf. A152832 (by Superseeker).
Cf. sequences related to the triangular spiral: A022266, A022267, A027468, A038764, A045946, A051682, A062708, A062725, A062728, A062741, A064225, A064226, A081266-A081268, A081270-A081272, A081275 [incomplete list].

Programs

  • Magma
    [(6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1: n in [0..50]];
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{2,4,12,18,31},60] (* Harvey P. Dale, Jun 15 2022 *)
  • PARI
    for(n=0, 50, print1((6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1", "));
    

Formula

G.f.: (2+2*x+4*x^2+2*x^3-x^4)/((1+x)^2*(1-x)^3).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
a(n)-a(-n-1) = A168329(n+1).
a(n)+a(n-1) = A102214(n).
a(2n)-a(2n-1) = A016885(n).
a(2n+1)-a(2n) = A016825(n).
Showing 1-4 of 4 results.