A064225 a(n) = (9*n^2 + 5*n + 2)/2.
1, 8, 24, 49, 83, 126, 178, 239, 309, 388, 476, 573, 679, 794, 918, 1051, 1193, 1344, 1504, 1673, 1851, 2038, 2234, 2439, 2653, 2876, 3108, 3349, 3599, 3858, 4126, 4403, 4689, 4984, 5288, 5601, 5923, 6254, 6594, 6943, 7301, 7668, 8044, 8429, 8823, 9226
Offset: 0
Examples
Illustration of initial terms: . . o . o o . o o o o o . o o o o o o o . o o o o o o o o o o . o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o . o o o o o o o o o o . o o o o o o o . o o o o o . o o . o . . 1 8 24 49 - _Aaron David Fairbanks_, Feb 23 2025
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- National Security Agency, Intrigued? (advertisement), Notices of the Amer. Math. Soc., vol. 49 (2002), p. 216.
- J. A. Siehler, Selections without adjacency on a rectangular grid, arXiv:1409.3869, Table 3, k=2 (different offset)
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
Table[(9n^2+5n+2)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,8,24},51] (* Harvey P. Dale, Sep 13 2011 *)
-
PARI
{a(n) = 1 + n * (9*n + 5) / 2}; /* Michael Somos, Jul 22 2006 */
-
Scheme
(define (A064225 n) (/ (+ (* 9 n n) (* 5 n) 2) 2))
Formula
a(n) = 9*n+a(n-1)-2, with n>0, a(0) = 1. - Vincenzo Librandi, Aug 07 2010
a(0)=1, a(1)=8, a(2)=24, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Sep 13 2011
G.f.: (1+5*x+3*x^2)/(1-x)^3. - Colin Barker, Feb 23 2012
A064226(n) = a(-1-n). - Michael Somos, Jul 22 2006 (While the sequence itself is only one-way infinite, this identity works, as the defining formula (in the Name-field) produces integers also for the negative values of n, -1, -2, -3, etc.) - Antti Karttunen, Mar 24 2012
E.g.f.: exp(x)*(2 + 14*x + 9*x^2)/2. - Stefano Spezia, Dec 25 2022
Comments