cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A022267 a(n) = n*(9*n + 1)/2.

Original entry on oeis.org

0, 5, 19, 42, 74, 115, 165, 224, 292, 369, 455, 550, 654, 767, 889, 1020, 1160, 1309, 1467, 1634, 1810, 1995, 2189, 2392, 2604, 2825, 3055, 3294, 3542, 3799, 4065, 4340, 4624, 4917, 5219, 5530, 5850, 6179
Offset: 0

Views

Author

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 0, 1, 2, 3, 4, ... in a triangular spiral; then a(n) is the sequence found by reading the line from 0 in the direction 0, 5, ... . The spiral begins:
.
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
.
(End)
a(n) is the sum of n consecutive integers starting from 4*n+1: (5), (9+10), (13+14+15), ... - Klaus Purath, Jul 07 2020
a(n) with n>0 are the numbers with the periodic length 3 in the Bulgarian and Mancala solitaire. - Paul Weisenhorn, Jan 29 2022

Crossrefs

Cf. similar sequences listed in A254963.
Cf. similar sequences listed in A022289.

Programs

  • Maple
    seq(binomial(9*n+1,2)/9, n=0..37); # Zerinvary Lajos, Jan 21 2007
  • Mathematica
    Table[ n (9 n + 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 19}, 40] (* Harvey P. Dale, Jul 01 2013 *)
  • PARI
    vector(100,n,(n-1)*(9*n-8)/2) \\ Derek Orr, Feb 06 2015

Formula

a(n) = A110449(n, 4) for n>3.
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 4*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A000566(n). (End)
a(n) = 9*n + a(n-1) - 4 with n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = A218470(9*n+4). - Philippe Deléham, Mar 27 2013
a(n) = A000217(5*n) - A000217(4*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (1/2)*(9*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
a(n) = A060544(n+1) - A016813(n). - Leo Tavares, Mar 20 2022

A022266 a(n) = n*(9*n - 1)/2.

Original entry on oeis.org

0, 4, 17, 39, 70, 110, 159, 217, 284, 360, 445, 539, 642, 754, 875, 1005, 1144, 1292, 1449, 1615, 1790, 1974, 2167, 2369, 2580, 2800, 3029, 3267, 3514, 3770, 4035, 4309, 4592, 4884, 5185, 5495, 5814, 6142, 6479, 6825, 7180, 7544, 7917, 8299, 8690, 9090, 9499
Offset: 0

Views

Author

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the line from 0 in the direction 0,4,...
The spiral begins:
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
(End)
a(n) with n>0 are the numbers with period length 3 in Bulgarian and Mancala solitaire. - Paul Weisenhorn Jan 29 2022

Crossrefs

Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = binomial(9*n,2)/9 for n >= 0. - Zerinvary Lajos, Jan 02 2007
a(n) = A049452(n) - A000326(n). - Zerinvary Lajos, Jun 12 2007
a(n) = 9*n + a(n-1) - 5 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(4 + 5*x)/(1 - x)^3. - Colin Barker, Feb 14 2012
a(n) = A218470(9*n+3). - Philippe Deléham, Mar 27 2013
a(n) = A000217(5*n-1) - A000217(4*n-1). - Bruno Berselli, Oct 17 2016
From Wesley Ivan Hurt, Dec 04 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = (1/7) * Sum_{i=n..(8*n-1)} i. (End)
E.g.f.: (x/2)*(9*x + 8)*exp(x). - G. C. Greubel, Aug 24 2017
a(n) = A000326(3*n) / 3. - Joerg Arndt, May 04 2021

A062123 a(n) = (9n^2 + 9n + 4)/2.

Original entry on oeis.org

2, 11, 29, 56, 92, 137, 191, 254, 326, 407, 497, 596, 704, 821, 947, 1082, 1226, 1379, 1541, 1712, 1892, 2081, 2279, 2486, 2702, 2927, 3161, 3404, 3656, 3917, 4187, 4466, 4754, 5051, 5357, 5672, 5996, 6329, 6671, 7022, 7382, 7751, 8129, 8516, 8912, 9317
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

Comments

Third column of A046741.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).

Crossrefs

Programs

  • GAP
    List([0..50], n -> 2 +9*n*(1+n)/2); # G. C. Greubel, Jan 31 2019
  • Magma
    [2 +9*n*(1+n)/2: n in [0..50]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[2 +9*n*(1+n)/2, {n,0,50}] (* G. C. Greubel, Jan 31 2019 *)
    LinearRecurrence[{3,-3,1},{2,11,29},50] (* Harvey P. Dale, Jan 12 2020 *)
  • PARI
    for (n=0, 1000, write("b062123.txt", n, " ", 2 + (n + n^2)*9/2) ) \\ Harry J. Smith, Aug 02 2009
    
  • Sage
    [2 +9*n*(1+n)/2 for n in range(50)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (1+2*x)*(2+x)/(1-x)^3. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
a(n) = 9*n + a(n-1), with n>0, a(0)=2. - Vincenzo Librandi, Aug 07 2010
E.g.f.: (4 +18*x +9*x^2)*exp(x)/2. - G. C. Greubel, Jan 31 2019

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A064225 a(n) = (9*n^2 + 5*n + 2)/2.

Original entry on oeis.org

1, 8, 24, 49, 83, 126, 178, 239, 309, 388, 476, 573, 679, 794, 918, 1051, 1193, 1344, 1504, 1673, 1851, 2038, 2234, 2439, 2653, 2876, 3108, 3349, 3599, 3858, 4126, 4403, 4689, 4984, 5288, 5601, 5923, 6254, 6594, 6943, 7301, 7668, 8044, 8429, 8823, 9226
Offset: 0

Views

Author

N. J. A. Sloane, Sep 22 2001

Keywords

Comments

Diagonal of triangular spiral in A051682. - Michael Somos, Jul 22 2006
Ehrhart polynomial of closed quadrilateral with vertices (0,2),(2,3),(3,1),(2,0). - Michael Somos, Jul 22 2006
In the natural number array A000027 this sequence is the first knight moves diagonal (A081267 is the second, A001844 is the main diagonal). It can be used to define this diagonal for any array: A007318(A064225-1)=A005809 (Subtraction by 1 because A007318 is defined with offset 0.) - Tilman Piesk, Mar 24 2012
Or positions of pentagonal numbers, such that p(a(n)) = p(a(n)-1) + p(3*n+1), where p=A000326. - Vladimir Shevelev, Jan 21 2014

Examples

			Illustration of initial terms:
.
.                                    o
.                                 o o
.                      o       o o o o
.                   o o     o o o o o
.           o    o o o o     o o o o o
.        o o      o o o     o o o o o
.   o     o o    o o o o     o o o o o
.        o o      o o o     o o o o o
.           o    o o o o     o o o o o
.                   o o     o o o o o
.                      o       o o o o
.                                 o o
.                                    o
.
.   1     8        24           49
- _Aaron David Fairbanks_, Feb 23 2025
		

Crossrefs

Programs

  • Mathematica
    Table[(9n^2+5n+2)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,8,24},51] (* Harvey P. Dale, Sep 13 2011 *)
  • PARI
    {a(n) = 1 + n * (9*n + 5) / 2}; /* Michael Somos, Jul 22 2006 */
    
  • Scheme
    (define (A064225 n) (/ (+ (* 9 n n) (* 5 n) 2) 2))

Formula

a(n) = 9*n+a(n-1)-2, with n>0, a(0) = 1. - Vincenzo Librandi, Aug 07 2010
a(0)=1, a(1)=8, a(2)=24, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Sep 13 2011
G.f.: (1+5*x+3*x^2)/(1-x)^3. - Colin Barker, Feb 23 2012
A064226(n) = a(-1-n). - Michael Somos, Jul 22 2006 (While the sequence itself is only one-way infinite, this identity works, as the defining formula (in the Name-field) produces integers also for the negative values of n, -1, -2, -3, etc.) - Antti Karttunen, Mar 24 2012
E.g.f.: exp(x)*(2 + 14*x + 9*x^2)/2. - Stefano Spezia, Dec 25 2022

A064226 a(n) = (9*n^2 + 13*n + 6)/2.

Original entry on oeis.org

3, 14, 34, 63, 101, 148, 204, 269, 343, 426, 518, 619, 729, 848, 976, 1113, 1259, 1414, 1578, 1751, 1933, 2124, 2324, 2533, 2751, 2978, 3214, 3459, 3713, 3976, 4248, 4529, 4819, 5118, 5426, 5743, 6069, 6404, 6748, 7101, 7463, 7834, 8214, 8603, 9001, 9408, 9824
Offset: 0

Views

Author

N. J. A. Sloane, Sep 22 2001

Keywords

Comments

Diagonal of triangular spiral in A051682. - Paul Barry, Mar 15 2003
Ehrhart polynomial of open quadrilateral with vertices (0,2),(2,3),(3,1),(2,0). - Michael Somos, Jul 22 2006

Crossrefs

Programs

  • Magma
    I:=[3,14,34]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 19 2015
  • Maple
    A064226:=n-> (9*n^2 + 13*n + 6) / 2; seq(A064226(n), n=0..50); # Wesley Ivan Hurt, May 08 2014
  • Mathematica
    Table[(9 n^2 + 13 n + 6)/2, {n, 0, 50}] (* Wesley Ivan Hurt, May 08 2014 *)
    LinearRecurrence[{3, -3, 1}, {3, 14, 34}, 50] (* Vincenzo Librandi, Jul 19 2015 *)
  • PARI
    {a(n) = 3 + n * (9*n + 13) / 2}; /* Michael Somos, Jul 22 2006 */
    

Formula

From Paul Barry, Mar 15 2003: (Start)
a(n) = 3*C(n,0) + 11*C(n,1) + 9*C(n,2); binomial transform of (3, 11, 9, 0, 0, 0, ...).
G.f.: (3 + 5*x + x^2)/(1-x)^3.
a(n) = A081268(n) + 2. (End)
A064225(n) = a(-1-n). - Michael Somos, Jul 22 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Apr 16 2023
E.g.f.: (3 + 11*x + 9*x^2/2)*exp(x). - Elmo R. Oliveira, Oct 21 2024

A178977 a(n) = (3*n+2)*(3*n+5)/2.

Original entry on oeis.org

5, 20, 44, 77, 119, 170, 230, 299, 377, 464, 560, 665, 779, 902, 1034, 1175, 1325, 1484, 1652, 1829, 2015, 2210, 2414, 2627, 2849, 3080, 3320, 3569, 3827, 4094, 4370, 4655, 4949, 5252, 5564, 5885, 6215, 6554, 6902, 7259, 7625, 8000, 8384, 8777, 9179, 9590, 10010
Offset: 0

Views

Author

Paul Curtz, Jan 02 2011

Keywords

Comments

Companion to A145910.

Crossrefs

Programs

Formula

a(n) = a(n-1) + 6 + 9*n.
a(n) = A178971(3*n+2).
a(n) = A145910(n) + 3 + 3*n = A145910(n) + A008585(n+1).
a(n) = A168233(n+1)*A168300(n+1).
G.f.: (-5-5*x+x^2)/(x-1)^3. [Adapted to the offset by Bruno Berselli, Apr 14 2011]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Apr 19 2013
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=0} 1/a(n) = 1/3.
Sum_{n>=0} (-1)^n/a(n) = 4*Pi/(9*sqrt(3)) - 1/3 - 4*log(2)/9. (End)
From Elmo R. Oliveira, Oct 30 2024: (Start)
E.g.f.: exp(x)*exp(x)*(5 + 15*x + 9*x^2/2).
a(n) = A016789(n)*A016789(n+1)/2. (End)

A235537 Expansion of (6 + 13*x - 8*x^2 - 8*x^3 + 6*x^4)/((1 + x)^2*(1 - x)^3).

Original entry on oeis.org

6, 19, 23, 41, 49, 72, 84, 112, 128, 161, 181, 219, 243, 286, 314, 362, 394, 447, 483, 541, 581, 644, 688, 756, 804, 877, 929, 1007, 1063, 1146, 1206, 1294, 1358, 1451, 1519, 1617, 1689, 1792, 1868, 1976, 2056, 2169, 2253, 2371, 2459, 2582, 2674, 2802, 2898
Offset: 0

Views

Author

Bruno Berselli, Jan 23 2014

Keywords

Crossrefs

Cf. A235332.

Programs

  • Magma
    [(6*n*(3*n+17)-(2*n+43)*(-1)^n+11)/16+8: n in [0..50]];
  • Mathematica
    Table[(6 n (3 n + 17) - (2 n + 43) (-1)^n + 11)/16 + 8, {n, 0, 50}]
    LinearRecurrence[{1,2,-2,-1,1},{6,19,23,41,49},80] (* Harvey P. Dale, Aug 22 2015 *)

Formula

G.f.: (6 + 13*x - 8*x^2 - 8*x^3 + 6*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (6*n*(3*n + 17) - (2*n + 43)*(-1)^n + 11)/16 + 8. The terms a(2k) are in A235332; the closed form of the terms a(2k+1) is n*(9*n+35)/2+19.
Showing 1-7 of 7 results.