cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A235332 a(n) = n*(9*n + 25)/2 + 6.

Original entry on oeis.org

6, 23, 49, 84, 128, 181, 243, 314, 394, 483, 581, 688, 804, 929, 1063, 1206, 1358, 1519, 1689, 1868, 2056, 2253, 2459, 2674, 2898, 3131, 3373, 3624, 3884, 4153, 4431, 4718, 5014, 5319, 5633, 5956, 6288, 6629, 6979, 7338, 7706, 8083, 8469, 8864, 9268, 9681, 10103
Offset: 0

Views

Author

Bruno Berselli, Jan 22 2014

Keywords

Comments

This is the case d=6 of n*(9*n + 4*d + 1)/2 + d. Other similar sequences are:
d=0, A022267;
d=1, A064225;
d=2, A062123;
d=3, A064226;
d=4, A022266 (with initial 0);
d=5, A178977.
First bisection of A235537.

Crossrefs

Programs

  • Magma
    [n*(9*n+25)/2+6: n in [0..50]];
    
  • Mathematica
    Table[n (9 n + 25)/2 + 6, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{6,23,49},50] (* Harvey P. Dale, Feb 12 2022 *)
  • PARI
    a(n)=n*(9*n+25)/2+6 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (6 + 5*x - 2*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
2*a(n) - a(n+1) + 12 = A081267(n).
E.g.f.: exp(x)*(12 + 34*x + 9*x^2)/2. - Elmo R. Oliveira, Nov 13 2024

A178978 a(n) = A144448(n+1)/8.

Original entry on oeis.org

0, 2, 5, 1, 14, 20, 1, 35, 44, 2, 65, 77, 10, 104, 119, 5, 152, 170, 7, 209, 230, 28, 275, 299, 4, 350, 377, 5, 434, 464, 55, 527, 560, 22, 629, 665, 26, 740, 779, 91, 860, 902, 35, 989, 1034, 40, 1127, 1175, 136, 1274, 1325, 17
Offset: 0

Views

Author

Paul Curtz, Jan 02 2011

Keywords

Comments

Differs from A178971 for indices n > 23.

Crossrefs

Programs

Formula

Trisections:
a(3*n) = A145911(n);
a(3*n+1) = A145910(n);
a(3*n+2) = A178977(n).
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81). - G. C. Greubel, Mar 06 2022
Showing 1-2 of 2 results.