A081269 Duplicate of A064226.
3, 14, 34, 63, 101, 148, 204, 269, 343, 426, 518, 619, 729, 848, 976, 1113, 1259, 1414
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Illustration of initial terms: . . o . o o . o o o o o . o o o o o o o . o o o o o o o o o o . o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o . o o o o o o o o o o . o o o o o o o . o o o o o . o o . o . . 1 8 24 49 - _Aaron David Fairbanks_, Feb 23 2025
Table[(9n^2+5n+2)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,8,24},51] (* Harvey P. Dale, Sep 13 2011 *)
{a(n) = 1 + n * (9*n + 5) / 2}; /* Michael Somos, Jul 22 2006 */
(define (A064225 n) (/ (+ (* 9 n n) (* 5 n) 2) 2))
[ n eq 1 select 1 else Self(n-1)+9*n-16: n in [1..50] ];
seq((16-23*n+9*n^2)*1/2,n=1..40); # Emeric Deutsch, May 07 2008
Table[(9n^2-23n+16)/2,{n,40}] (* or *) LinearRecurrence[{3,-3,1},{1,3,14},40] (* Harvey P. Dale, Oct 01 2011 *)
x='x+O('x^50); Vec(x*(1+8*x^2)/(1-x)^3) \\ G. C. Greubel, Feb 18 2017
[n*(9*n+25)/2+6: n in [0..50]];
Table[n (9 n + 25)/2 + 6, {n, 0, 50}] LinearRecurrence[{3,-3,1},{6,23,49},50] (* Harvey P. Dale, Feb 12 2022 *)
a(n)=n*(9*n+25)/2+6 \\ Charles R Greathouse IV, Oct 07 2015
a(1) = 9*1 + 1 + 2 = 12. a(2) = 9*2 + 12 + 2 = 32. a(3) = 9*3 + 32 + 2 = 61.
a(n)=(9*n^2+13*n+2)/2 \\ Charles R Greathouse IV, Jun 17 2017
[(9*n^2+17*n+6)/2: n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
CoefficientList[Series[(3+7x-x^2)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 08 2012 *)
a(n)=(9*n^2+17*n+6)/2 \\ Charles R Greathouse IV, Jun 17 2017
[(6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1: n in [0..50]];
LinearRecurrence[{1,2,-2,-1,1},{2,4,12,18,31},60] (* Harvey P. Dale, Jun 15 2022 *)
for(n=0, 50, print1((6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1", "));
Comments