cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000326 Pentagonal numbers: a(n) = n*(3*n-1)/2.

Original entry on oeis.org

0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151
Offset: 0

Views

Author

Keywords

Comments

The average of the first n (n > 0) pentagonal numbers is the n-th triangular number. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003
a(n) is the sum of n integers starting from n, i.e., 1, 2 + 3, 3 + 4 + 5, 4 + 5 + 6 + 7, etc. - Jon Perry, Jan 15 2004
Partial sums of 1, 4, 7, 10, 13, 16, ... (1 mod 3), a(2k) = k(6k-1), a(2k-1) = (2k-1)(3k-2). - Jon Perry, Sep 10 2004
Starting with offset 1 = binomial transform of [1, 4, 3, 0, 0, 0, ...]. Also, A004736 * [1, 3, 3, 3, ...]. - Gary W. Adamson, Oct 25 2007
If Y is a 3-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Solutions to the duplication formula 2*a(n) = a(k) are given by the index pairs (n, k) = (5,7), (5577, 7887), (6435661, 9101399), etc. The indices are integer solutions to the pair of equations 2(6n-1)^2 = 1 + y^2, k = (1+y)/6, so these n can be generated from the subset of numbers [1+A001653(i)]/6, any i, where these are integers, confined to the cases where the associated k=[1+A002315(i)]/6 are also integers. - R. J. Mathar, Feb 01 2008
a(n) is a binomial coefficient C(n,4) (A000332) if and only if n is a generalized pentagonal number (A001318). Also see A145920. - Matthew Vandermast, Oct 28 2008
Even octagonal numbers divided by 8. - Omar E. Pol, Aug 18 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
The hyper-Wiener index of the star-tree with n edges (see A196060, example). - Emeric Deutsch, Sep 30 2011
More generally the n-th k-gonal number is equal to n + (k-2)*A000217(n-1), n >= 1, k >= 3. In this case k = 5. - Omar E. Pol, Apr 06 2013
Note that both Euler's pentagonal theorem for the partition numbers and Euler's pentagonal theorem for the sum of divisors refer more exactly to the generalized pentagonal numbers, not this sequence. For more information see A001318, A175003, A238442. - Omar E. Pol, Mar 01 2014
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Schuetz and Whieldon link). a(n)= Cat(n,3), so enumerates the number of (n+1)-gon partitions of a (3*(n-1)+2)-gon. Analogous sequences are A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014
Binomial transform of (0, 1, 3, 0, 0, 0, ...) (A169585 with offset 1) and second partial sum of (0, 1, 3, 3, 3, ...). - Gary W. Adamson, Oct 05 2015
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
a(n) is also the number of edges in the Mycielskian of the complete graph K[n]. Indeed, K[n] has n vertices and n(n-1)/2 edges. Then its Mycielskian has n + 3n(n-1)/2 = n(3n-1)/2. See p. 205 of the West reference. - Emeric Deutsch, Nov 04 2016
Sum of the numbers from n to 2n-1. - Wesley Ivan Hurt, Dec 03 2016
Also the number of maximal cliques in the n-Andrásfai graph. - Eric W. Weisstein, Dec 01 2017
Coefficients in the hypergeometric series identity 1 - 5*(x - 1)/(2*x + 1) + 12*(x - 1)*(x - 2)/((2*x + 1)*(2*x + 2)) - 22*(x - 1)*(x - 2)*(x - 3)/((2*x + 1)*(2*x + 2)*(2*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A002412 and A002418. Column 2 of A103450. - Peter Bala, Mar 14 2019
A generalization of the Comment dated Apr 10 2003 follows. (k-3)*A000292(n-2) plus the average of the first n (2k-1)-gonal numbers is the n-th k-gonal number. - Charlie Marion, Nov 01 2020
a(n+1) is the number of Dyck paths of size (3,3n+1); i.e., the number of NE lattice paths from (0,0) to (3,3n+1) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
a(n) is the largest sum of n positive integers x_1, ..., x_n such that x_i | x_(i+1)+1 for each 1 <= i <= n, where x_(n+1) = x_1. - Yifan Xie, Feb 21 2025

Examples

			Illustration of initial terms:
.
.                                       o
.                                     o o
.                          o        o o o
.                        o o      o o o o
.                o     o o o    o o o o o
.              o o   o o o o    o o o o o
.        o   o o o   o o o o    o o o o o
.      o o   o o o   o o o o    o o o o o
.  o   o o   o o o   o o o o    o o o o o
.
.  1    5     12       22           35
- _Philippe Deléham_, Mar 30 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 2 and 311.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 40.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 284.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 64.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-130, 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 7-10.
  • André Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 98-100.
  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. A001318 (generalized pentagonal numbers), A049452, A033570, A010815, A034856, A051340, A004736, A033568, A049453, A002411 (partial sums), A033579.
See A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A240137: sum of n consecutive cubes starting from n^3.
Cf. similar sequences listed in A022288.
Partial sums of A016777.

Programs

  • GAP
    List([0..50],n->n*(3*n-1)/2); # Muniru A Asiru, Mar 18 2019
    
  • Haskell
    a000326 n = n * (3 * n - 1) `div` 2  -- Reinhard Zumkeller, Jul 07 2012
    
  • Magma
    [n*(3*n-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 15 2015
    
  • Maple
    A000326 := n->n*(3*n-1)/2: seq(A000326(n), n=0..100);
    A000326:=-(1+2*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+3 od: seq(a[n], n=0..50); # Miklos Kristof, Zerinvary Lajos, Feb 18 2008
  • Mathematica
    Table[n (3 n - 1)/2, {n, 0, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    Array[# (3 # - 1)/2 &, 47, 0] (* Zerinvary Lajos, Jul 10 2009 *)
    LinearRecurrence[{3, -3, 1}, {0, 1, 5}, 61] (* Harvey P. Dale, Dec 27 2011 *)
    pentQ[n_] := IntegerQ[(1 + Sqrt[24 n + 1])/6]; pentQ[0] = True; Select[Range[0, 3200], pentQ@# &] (* Robert G. Wilson v, Mar 31 2014 *)
    Join[{0}, Accumulate[Range[1, 312, 3]]] (* Harvey P. Dale, Mar 26 2016 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[5], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    CoefficientList[Series[x (-1 - 2 x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
    PolygonalNumber[5, Range[0, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    a(n)=n*(3*n-1)/2
    
  • PARI
    vector(100, n, n--; binomial(3*n, 2)/3) \\ Altug Alkan, Oct 06 2015
    
  • PARI
    is_a000326(n) = my(s); n==0 || (issquare (24*n+1, &s) && s%6==5); \\ Hugo Pfoertner, Aug 03 2023
    
  • Python
    # Intended to compute the initial segment of the sequence, not isolated terms.
    def aList():
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 3, y + 3
    A000326 = aList()
    print([next(A000326) for i in range(47)]) # Peter Luschny, Aug 04 2019

Formula

Product_{m > 0} (1 - q^m) = Sum_{k} (-1)^k*x^a(k). - Paul Barry, Jul 20 2003
G.f.: x*(1+2*x)/(1-x)^3.
E.g.f.: exp(x)*(x+3*x^2/2).
a(n) = n*(3*n-1)/2.
a(-n) = A005449(n).
a(n) = binomial(3*n, 2)/3. - Paul Barry, Jul 20 2003
a(n) = A000290(n) + A000217(n-1). - Lekraj Beedassy, Jun 07 2004
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 2*a(n-1) - a(n-2) + 3. - Miklos Kristof, Mar 09 2005
a(n) = Sum_{k=1..n} (2*n - k). - Paul Barry, Aug 19 2005
a(n) = 3*A000217(n) - 2*n. - Lekraj Beedassy, Sep 26 2006
a(n) = A126890(n, n-1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = A049452(n) - A022266(n) = A033991(n) - A005476(n). - Zerinvary Lajos, Jun 12 2007
Equals A034856(n) + (n - 1)^2. Also equals A051340 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
a(n) = binomial(n+1, 2) + 2*binomial(n, 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 5. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 3*n-2 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 20 2010
a(n) = A000217(n) + 2*A000217(n-1). - Vincenzo Librandi, Nov 20 2010
a(n) = A014642(n)/8. - Omar E. Pol, Aug 18 2011
a(n) = A142150(n) + A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = (A000290(n) + A000384(n))/2 = (A000217(n) + A000566(n))/2 = A049450(n)/2. - Omar E. Pol, Jan 11 2013
a(n) = n*A000217(n) - (n-1)*A000217(n-1). - Bruno Berselli, Jan 18 2013
a(n) = A005449(n) - n. - Philippe Deléham, Mar 30 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A016777(n),
a(n) = a(n+2) - A016969(n),
a(n) = a(n+3) - A016777(n)*3 = a(n+3) - A017197(n),
a(n) = a(n+4) - A016969(n)*2 = a(n+4) - A017641(n),
a(n) = a(n+5) - A016777(n)*5,
a(n) = a(n+6) - A016969(n)*3,
a(n) = a(n+7) - A016777(n)*7,
a(n) = a(n+8) - A016969(n)*4,
a(n) = a(n+9) - A016777(n)*9. (End)
a(n) = A000217(2n-1) - A000217(n-1), for n > 0. - Ivan N. Ianakiev, Apr 17 2013
a(n) = A002411(n) - A002411(n-1). - J. M. Bergot, Jun 12 2013
Sum_{n>=1} a(n)/n! = 2.5*exp(1). - Richard R. Forberg, Jul 15 2013
a(n) = floor(n/(exp(2/(3*n)) - 1)), for n > 0. - Richard R. Forberg, Jul 27 2013
From Vladimir Shevelev, Jan 24 2014: (Start)
a(3*a(n) + 4*n + 1) = a(3*a(n) + 4*n) + a(3*n+1).
A generalization. Let {G_k(n)}_(n >= 0) be sequence of k-gonal numbers (k >= 3). Then the following identity holds: G_k((k-2)*G_k(n) + c(k-3)*n + 1) = G_k((k-2)*G_k(n) + c(k-3)*n) + G_k((k-2)*n + 1), where c = A000124. (End)
A242357(a(n)) = 1 for n > 0. - Reinhard Zumkeller, May 11 2014
Sum_{n>=1} 1/a(n)= (1/3)*(9*log(3) - sqrt(3)*Pi). - Enrique Pérez Herrero, Dec 02 2014. See the decimal expansion A244641.
a(n) = (A000292(6*n+k-1)-A000292(k))/(6*n-1)-A000217(3*n+k), for any k >= 0. - Manfred Arens, Apr 26 2015 [minor edits from Wolfdieter Lang, May 10 2015]
a(n) = A258708(3*n-1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
a(n) = A007584(n) - A245301(n-1), for n > 0. - Manfred Arens, Jan 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi - 6*log(2))/3 = 0.85501000622865446... - Ilya Gutkovskiy, Jul 28 2016
a(m+n) = a(m) + a(n) + 3*m*n. - Etienne Dupuis, Feb 16 2017
In general, let P(k,n) be the n-th k-gonal number. Then P(k,m+n) = P(k,m) + (k-2)mn + P(k,n). - Charlie Marion, Apr 16 2017
a(n) = A023855(2*n-1) - A023855(2*n-2). - Luc Rousseau, Feb 24 2018
a(n) = binomial(n,2) + n^2. - Pedro Caceres, Jul 28 2019
Product_{n>=2} (1 - 1/a(n)) = 3/5. - Amiram Eldar, Jan 21 2021
(n+1)*(a(n^2) + a(n^2+1) + ... + a(n^2+n)) = n*(a(n^2+n+1) + ... + a(n^2+2n)). - Charlie Marion, Apr 28 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2)*binomial(3*n+k-1, 2*k). - Peter Bala, Nov 04 2024

Extensions

Incorrect example removed by Joerg Arndt, Mar 11 2010

A003215 Hex (or centered hexagonal) numbers: 3*n*(n+1)+1 (crystal ball sequence for hexagonal lattice).

Original entry on oeis.org

1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, 3367, 3571, 3781, 3997, 4219, 4447, 4681, 4921, 5167, 5419, 5677, 5941, 6211, 6487, 6769
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Crystal ball sequence for A_2 lattice. - Michael Somos, Jun 03 2012
Sixth spoke of hexagonal spiral (cf. A056105-A056109).
Number of ordered integer triples (a,b,c), -n <= a,b,c <= n, such that a+b+c=0. - Benoit Cloitre, Jun 14 2003
Also the number of partitions of 6n into at most 3 parts, A001399(6n). - R. K. Guy, Oct 20 2003
Also, a(n) is the number of partitions of 6(n+1) into exactly 3 distinct parts. - William J. Keith, Jul 01 2004
Number of dots in a centered hexagonal figure with n+1 dots on each side.
Values of second Bessel polynomial y_2(n) (see A001498).
First differences of cubes (A000578). - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
Final digits of Hex numbers (hex(n) mod 10) are periodic with palindromic period of length 5 {1, 7, 9, 7, 1}. Last two digits of Hex numbers (hex(n) mod 100) are periodic with palindromic period of length 100. - Alexander Adamchuk, Aug 11 2006
All divisors of a(n) are congruent to 1, modulo 6. Proof: If p is an odd prime different from 3 then 3n^2 + 3n + 1 = 0 (mod p) implies 9(2n + 1)^2 = -3 (mod p), whence p = 1 (mod 6). - Nick Hobson, Nov 13 2006
For n>=1, a(n) is the side of Outer Napoleon Triangle whose reference triangle is a right triangle with legs (3a(n))^(1/2) and 3n(a(n))^(1/2). - Tom Schicker (tschicke(AT)email.smith.edu), Apr 25 2007
Number of triples (a,b,c) where 0<=(a,b)<=n and c=n (at least once the term n). E.g., for n = 1: (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1), so a(1)=7. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 20 2007
Equals the triangular numbers convolved with [1, 4, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
From Terry Stickels, Dec 07 2009: (Start)
Also the maximum number of viewable cubes from any one static point while viewing a cube stack of identical cubes of varying magnitude.
For example, viewing a 2 X 2 X 2 stack will yield 7 maximum viewable cubes.
If the stack is 3 X 3 X 3, the maximum number of viewable cubes from any one static position is 19, and so on.
The number of cubes in the stack must always be the same number for width, length, height (at true regular cubic stack) and the maximum number of visible cubes can always be found by taking any cubic number and subtracting the number of the cube that is one less.
Examples: 125 - 64 = 61, 64 - 27 = 37, 27 - 8 = 19. (End)
The sequence of digital roots of the a(n) is period 3: repeat [1,7,1]. - Ant King, Jun 17 2012
The average of the first n (n>0) centered hexagonal numbers is the n-th square. - Philippe Deléham, Feb 04 2013
A002024 is the following array A read along antidiagonals:
1, 2, 3, 4, 5, 6, ...
2, 3, 4, 5, 6, 7, ...
3, 4, 5, 6, 7, 8, ...
4, 5, 6, 7, 8, 9, ...
5, 6, 7, 8, 9, 10, ...
6, 7, 8, 9, 10, 11, ...
and a(n) is the hook sum Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). - R. J. Mathar, Jun 30 2013
a(n) is the sum of the terms in the n+1 X n+1 matrices minus those in n X n matrices in an array formed by considering A158405 an array (the beginning terms in each row are 1,3,5,7,9,11,...). - J. M. Bergot, Jul 05 2013
The formula also equals the product of the three distinct combinations of two consecutive numbers: n^2, (n+1)^2, and n*(n+1). - J. M. Bergot, Mar 28 2014
The sides of any triangle ABC are divided into 2n + 1 equal segments by 2n points: A_1, A_2, ..., A_2n in side a, and also on the sides b and c cyclically. If A'B'C' is the triangle delimited by AA_n, BB_n and CC_n cevians, we have (ABC)/(A'B'C') = a(n) (see Java applet link). - Ignacio Larrosa Cañestro, Jan 02 2015
a(n) is the maximal number of parts into which (n+1) triangles can intersect one another. - Ivan N. Ianakiev, Feb 18 2015
((2^m-1)n)^t mod a(n) = ((2^m-1)(n+1))^t mod a(n) = ((2^m-1)(2n+1))^t mod a(n), where m any positive integer, and t = 0(mod 6). - Alzhekeyev Ascar M, Oct 07 2016
((2^m-1)n)^t mod a(n) = ((2^m-1)(n+1))^t mod a(n) = a(n) - (((2^m-1)(2n+1))^t mod a(n)), where m any positive integer, and t = 3(mod 6). - Alzhekeyev Ascar M, Oct 07 2016
(3n+1)^(a(n)-1) mod a(n) = (3n+2)^(a(n)-1) mod a(n) = 1. If a(n) not prime, then always strong pseudoprime. - Alzhekeyev Ascar M, Oct 07 2016
Every positive integer is the sum of 8 hex numbers (zero included), at most 3 of which are greater than 1. - Mauro Fiorentini, Jan 01 2018
Area enclosed by the segment of Archimedean spiral between n*Pi/2 and (n+1)*Pi/2 in Pi^3/48 units. - Carmine Suriano, Apr 10 2018
This sequence contains all numbers k such that 12*k - 3 is a square. - Klaus Purath, Oct 19 2021
The continued fraction expansion of sqrt(3*a(n)) is [3n+1; {1, 1, 2n, 1, 1, 6n+2}]. For n = 0, this collapses to [1; {1, 2}]. - Magus K. Chu, Sep 12 2022

Examples

			G.f. = 1 + 7*x + 19*x^2 + 37*x^3 + 61*x^4 + 91*x^5 + 127*x^6 + 169*x^7 + 217*x^8 + ...
From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms:
.
.                                 o o o o
.                   o o o        o o o o o
.         o o      o o o o      o o o o o o
.   o    o o o    o o o o o    o o o o o o o
.         o o      o o o o      o o o o o o
.                   o o o        o o o o o
.                                 o o o o
.
.   1      7          19             37
.
(End)
From _Klaus Purath_, Dec 03 2021: (Start)
(1) a(19) is not a prime number, because besides a(19) = a(9) + P(29), a(19) = a(15) + P(20) = a(2) + P(33) is also true.
(2) a(25) is prime, because except for a(25) = a(12) + P(38) there is no other equation of this pattern. (End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A080853, and column k=2 of A047969.
See also A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A287326(A000124(n), 1).
Cf. A008292.
Cf. A154105.

Programs

Formula

a(n) = 3*n*(n+1) + 1, n >= 0 (see the name).
a(n) = (n+1)^3 - n^3 = a(-1-n).
G.f.: (1 + 4*x + x^2) / (1 - x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = 6*A000217(n) + 1.
a(n) = a(n-1) + 6*n = 2a(n-1) - a(n-2) + 6 = 3*a(n-1) - 3*a(n-2) + a(n-3) = A056105(n) + 5n = A056106(n) + 4*n = A056107(n) + 3*n = A056108(n) + 2*n = A056108(n) + n.
n-th partial arithmetic mean is n^2. - Amarnath Murthy, May 27 2003
a(n) = 1 + Sum_{j=0..n} (6*j). E.g., a(2)=19 because 1+ 6*0 + 6*1 + 6*2 = 19. - Xavier Acloque, Oct 06 2003
The sum of the first n hexagonal numbers is n^3. That is, Sum_{n>=1} (3*n*(n-1) + 1) = n^3. - Edward Weed (eweed(AT)gdrs.com), Oct 23 2003
a(n) = right term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 0 0 / 2 1 0 / 3 3 1]. M^n * [1 1 1] = [1 2n+1 a(n)]. E.g., a(4) = 61, right term in M^4 * [1 1 1], since M^4 * [1 1 1] = [1 9 61] = [1 2n+1 a(4)]. - Gary W. Adamson, Dec 22 2004
Row sums of triangle A130298. - Gary W. Adamson, Jun 07 2007
a(n) = 3*n^2 + 3*n + 1. Proof: 1) If n occurs once, it may be in 3 positions; for the two other ones, n terms are independently possible, then we have 3*n^2 different triples. 2) If the term n occurs twice, the third one may be placed in 3 positions and have n possible values, then we have 3*n more different triples. 3) The term n may occurs 3 times in one way only that gives the formula. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 20 2007
Binomial transform of [1, 6, 6, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 6, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = (n-1)*A000166(n) + (n-2)*A000166(n-1) = (n-1)floor(n!*e^(-1)+1) + (n-2)*floor((n-1)!*e^(-1)+1) (with offset 0). - Gary Detlefs, Dec 06 2009
a(n) = A028896(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = integral( (sin((n+1/2)x)/sin(x/2))^3, x=0..Pi)/Pi. - Yalcin Aktar, Dec 03 2011
Sum_{n>=0} 1/a(n) = Pi/sqrt(3)*tanh(Pi/(2*sqrt(3))) = 1.305284153013581... - Ant King, Jun 17 2012
a(n) = A000290(n) + A000217(2n+1). - Ivan N. Ianakiev, Sep 24 2013
a(n) = A002378(n+1) + A056220(n) = A005408(n) + 2*A005449(n) = 6*A000217(n) + 1. - Ivan N. Ianakiev, Sep 26 2013
a(n) = 6*A000124(n) - 5. - Ivan N. Ianakiev, Oct 13 2013
a(n) = A239426(n+1) / A239449(n+1) = A215630(2*n+1,n+1). - Reinhard Zumkeller, Mar 19 2014
a(n) = A243201(n) / A002061(n + 1). - Mathew Englander, Jun 03 2014
a(n) = A101321(6,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (1 + 6*x + 3*x^2)*exp(x). - Ilya Gutkovskiy, Jul 28 2016
a(n) = (A001844(n) + A016754(n))/2. - Bruce J. Nicholson, Aug 06 2017
a(n) = A045943(2n+1). - Miquel Cerda, Jan 22 2018
a(n) = 3*Integral_{x=n..n+1} x^2 dx. - Carmine Suriano, Apr 10 2018
a(n) = A287326(A000124(n), 1). - Kolosov Petro, Oct 22 2018
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 10*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 2/e. (End)
G.f.: polylog(-3, x)*(1-x)/x. See the Simon Plouffe formula above, and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 08 2021
a(n) = T(n-1)^2 - 2*T(n)^2 + T(n+1)^2, n >= 1, T = triangular number A000217. - Klaus Purath, Oct 11 2021
a(n) = 1 + 2*Sum_{j=n..2n} j. - Klaus Purath, Oct 19 2021
a(n) = A069099(n+1) - A000217(n). - Klaus Purath, Nov 03 2021
From Leo Tavares, Dec 03 2021: (Start)
a(n) = A005448(n) + A140091(n);
a(n) = A001844(n) + A002378(n);
a(n) = A005891(n) + A000217(n);
a(n) = A000290(n) + A000384(n+1);
a(n) = A060544(n-1) + 3*A000217(n);
a(n) = A060544(n-1) + A045943(n).
a(2*n+1) = A154105(n).
(End)

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A080859 a(n) = 6*n^2 + 4*n + 1.

Original entry on oeis.org

1, 11, 33, 67, 113, 171, 241, 323, 417, 523, 641, 771, 913, 1067, 1233, 1411, 1601, 1803, 2017, 2243, 2481, 2731, 2993, 3267, 3553, 3851, 4161, 4483, 4817, 5163, 5521, 5891, 6273, 6667, 7073, 7491, 7921, 8363, 8817, 9283, 9761, 10251, 10753, 11267
Offset: 0

Views

Author

Paul Barry, Feb 23 2003

Keywords

Comments

The old definition of this sequence was "Generalized polygonal numbers".
Column T(n,4) of A080853.
Sequence found by reading the line from 1, in the direction 1, 11, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011

Crossrefs

Subsequence of A186424.
Cf. A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.

Programs

Formula

G.f.: (C(3,0) + (C(5,2) - 2)*x + C(3,2)*x^2)/(1-x)^3 = (1 + 8*x + 3*x^2)/(1-x)^3.
E.g.f.: (1 + 10*x + 6*x^2)*exp(x). - Vincenzo Librandi, Apr 29 2016
a(n) = C(4,0) + C(4,1)n + C(4,2)n^2.
a(n) = A186424(2*n).
a(n) = 12*n + a(n-1) - 2 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = (n+1)*A000384(n+1) - n*A000384(n). - Bruno Berselli, Dec 10 2012
a(n) = (n+1)^4 mod n^3 for n >= 7. - J. M. Bergot, Aug 14 2017
a(n) = (2*n+1)^2 + 2*n^2. - Robert FERREOL, Jan 13 2024

Extensions

Definition replaced with the closed form by Bruno Berselli, Dec 10 2012

A081267 Diagonal of triangular spiral in A051682.

Original entry on oeis.org

1, 9, 26, 52, 87, 131, 184, 246, 317, 397, 486, 584, 691, 807, 932, 1066, 1209, 1361, 1522, 1692, 1871, 2059, 2256, 2462, 2677, 2901, 3134, 3376, 3627, 3887, 4156, 4434, 4721, 5017, 5322, 5636, 5959, 6291, 6632, 6982, 7341, 7709, 8086, 8472, 8867, 9271
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Binomial transform of (1, 8, 9, 0, 0, 0, ...).

Crossrefs

Cf. A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.

Programs

Formula

a(n) = C(n, 0) + 8*C(n, 1) + 9*C(n, 2).
a(n) = (9*n^2 + 7*n + 2)/2.
G.f.: (1 + 6*x + 2*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), for n > 2. a(n) = right term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 0 0 / 3 1 0 / 5 3 1]. M^n * [1 1 1] = [1 3n+1 a(n)]. - Gary W. Adamson, Dec 22 2004
a(n) = 9*n + a(n-1) - 1 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = (n+1)*A000326(n+1) - (n)*A000326(n). - Bruno Berselli, Dec 10 2012
a(n) = A050509(n) - A050509(n-1). - Bill McEachen, Nov 01 2020
E.g.f.: exp(x)*(2 + 16*x + 9*x^2)/2. - Stefano Spezia, Dec 25 2022

A006597 a(n) = n^2*(5*n-3)/2.

Original entry on oeis.org

0, 1, 14, 54, 136, 275, 486, 784, 1184, 1701, 2350, 3146, 4104, 5239, 6566, 8100, 9856, 11849, 14094, 16606, 19400, 22491, 25894, 29624, 33696, 38125, 42926, 48114, 53704, 59711, 66150, 73036, 80384, 88209, 96526, 105350, 114696, 124579, 135014, 146016, 157600
Offset: 0

Views

Author

Keywords

Comments

Structured heptagonal prism numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Apart from 0, partial sums of A220083. - Bruno Berselli, Dec 11 2012

References

  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 29.

Crossrefs

Cf. A100177 - structured prisms; A100145 for more on structured numbers.
Cf. similar sequences, with the formula (k*n - k + 2)*n^2/2, listed in A262000.

Programs

Formula

a(n) = (1/6)*(15*n^3 - 9*n^2). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
G.f.: x*(1+10*x+4*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n-1} n*(5*i+1) for n>0. - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = 1.1080093773051638036... = (sqrt(5*(5 - 2*sqrt(5)))*Pi - Pi^2 - 5*sqrt(5)*arccoth(sqrt(5)) + (25*log(5))/2)/9. - Vaclav Kotesovec, Oct 04 2016
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(2 + 12*x + 5*x^2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A006592(n)/4. (End)

Extensions

Name corrected by Arkadiusz Wesolowski, Jul 20 2011

A214675 a(n) = 9*n^2 - 13*n + 5.

Original entry on oeis.org

1, 15, 47, 97, 165, 251, 355, 477, 617, 775, 951, 1145, 1357, 1587, 1835, 2101, 2385, 2687, 3007, 3345, 3701, 4075, 4467, 4877, 5305, 5751, 6215, 6697, 7197, 7715, 8251, 8805, 9377, 9967, 10575, 11201, 11845, 12507, 13187, 13885, 14601, 15335, 16087
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 25 2012

Keywords

Comments

Central terms of triangle A214661.

Crossrefs

Cf. A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.

Programs

  • Haskell
    a214675 n = (9 * n - 13) * n + 5
    
  • Magma
    [(3*n-2)^2-(n-1): n in [1..50]]; // G. C. Greubel, Mar 08 2024
    
  • Mathematica
    Table[9n^2-13n+5,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,15,47}, 50] (* Harvey P. Dale, Nov 09 2019 *)
  • PARI
    a(n)=9*n^2-13*n+5 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [(3*n-2)^2-(n-1) for n in range(1,51)] # G. C. Greubel, Mar 08 2024

Formula

G.f.: x*(1+12*x+5*x^2)/(1-x)^3. - Bruno Berselli, Dec 10 2012
a(n) = n*A000567(n)-(n-1)*A000567(n-1). - Bruno Berselli, Dec 10 2012
E.g.f.: -5 + (5 - 4*x + 9*x^2)*exp(x). - G. C. Greubel, Mar 08 2024

A242239 T(n,k)=Number of length n+k+1 0..k arrays with every value 0..k appearing at least once in every consecutive k+2 elements, and new values 0..k introduced in order.

Original entry on oeis.org

3, 6, 5, 10, 12, 8, 15, 22, 22, 13, 21, 35, 43, 40, 21, 28, 51, 71, 82, 74, 34, 36, 70, 106, 139, 157, 136, 55, 45, 92, 148, 211, 271, 304, 250, 89, 55, 117, 197, 298, 416, 531, 586, 460, 144, 66, 145, 253, 400, 592, 821, 1047, 1129, 846, 233, 78, 176, 316, 517, 799
Offset: 1

Views

Author

R. H. Hardin, May 08 2014

Keywords

Comments

Table starts
...3....6...10...15....21....28....36....45....55....66....78....91...105
...5...12...22...35....51....70....92...117...145...176...210...247...287
...8...22...43...71...106...148...197...253...316...386...463...547...638
..13...40...82..139...211...298...400...517...649...796...958..1135..1327
..21...74..157..271...416...592...799..1037..1306..1606..1937..2299..2692
..34..136..304..531...821..1174..1590..2069..2611..3216..3884..4615..5409
..55..250..586.1047..1626..2332..3165..4125..5212..6426..7767..9235.10830
..89..460.1129.2059..3231..4642..6308..8229.10405.12836.15522.18463.21659
.144..846.2176.4047..6411..9256.12587.16429.20782.25646.31021.36907.43304
.233.1556.4195.7955.12716.18442.25138.32821.41527.51256.62008.73783.86581

Examples

			Some solutions for n=5 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....1....1....1....1....0....1....1
..2....2....0....2....2....1....0....0....2....0....2....2....0....1....2....0
..1....3....2....3....3....2....2....2....3....2....3....3....2....2....3....2
..3....4....3....4....4....3....3....3....0....3....0....0....3....3....4....3
..4....0....4....1....0....4....4....4....4....4....4....4....4....4....1....4
..0....2....2....0....1....0....2....0....2....1....2....1....0....2....0....1
..2....1....1....0....2....1....1....1....1....0....1....2....1....0....2....0
..2....3....0....2....3....0....0....1....0....0....3....4....2....1....3....4
..1....0....0....3....0....2....2....2....3....2....2....3....3....1....0....2
		

Crossrefs

Column 1 is A000045(n+3)
Column 2 is A196700(n+3)
Row 1 is A000217(n+1)
Row 2 is A000326(n+1)
Row 3 is A069099(n+1)
Row 4 is A220083

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +a(n-2) +a(n-3)
k=3: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4)
k=4: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5)
k=5: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6)
k=6: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7)
k=7: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8)
k=8: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9)
k=9: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10)
Empirical for row n:
n=1: a(n) = (1/2)*n^2 + (3/2)*n + 1
n=2: a(n) = (3/2)*n^2 + (5/2)*n + 1
n=3: a(n) = (7/2)*n^2 + (7/2)*n + 1
n=4: a(n) = (15/2)*n^2 + (9/2)*n + 1
n=5: a(n) = (31/2)*n^2 + (11/2)*n + 1 for n>1
n=6: a(n) = (63/2)*n^2 + (13/2)*n + 1 for n>2
n=7: a(n) = (127/2)*n^2 + (15/2)*n + 1 for n>3
n=8: a(n) = (255/2)*n^2 + (17/2)*n + 1 for n>4
n=9: a(n) = (511/2)*n^2 + (19/2)*n + 1 for n>5
n=10: a(n) = (1023/2)*n^2 + (21/2)*n + 1 for n>6
n=11: a(n) = (2047/2)*n^2 + (23/2)*n + 1 for n>7
n=12: a(n) = (4095/2)*n^2 + (25/2)*n + 1 for n>8
n=13: a(n) = (8191/2)*n^2 + (27/2)*n + 1 for n>9
n=14: a(n) = (16383/2)*n^2 + (29/2)*n + 1 for n>10
n=15: a(n) = (32767/2)*n^2 + (31/2)*n + 1 for n>11
Empirical large-k generalization, for k>n-4: T(n,k) = ((2^n-1)/2)*k^2 + ((2*n+1)/2)*k + 1
Empirical recurrence generalization, for column k: a(n) = sum {i in 1..k+1} a(n-i)
Showing 1-7 of 7 results.