cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A015237 a(n) = (2*n - 1)*n^2.

Original entry on oeis.org

0, 1, 12, 45, 112, 225, 396, 637, 960, 1377, 1900, 2541, 3312, 4225, 5292, 6525, 7936, 9537, 11340, 13357, 15600, 18081, 20812, 23805, 27072, 30625, 34476, 38637, 43120, 47937, 53100, 58621, 64512
Offset: 0

Views

Author

Keywords

Comments

Structured hexagonal prism numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of divisors of 60^(n-1) for n>0. - J. Lowell, Aug 30 2008
The sum of the 2*n+1 numbers between n*(n+1) and (n+1)*(n+2) gives a(n+1). - J. M. Bergot, Apr 17 2013
Partial sums of A080859. - J. M. Bergot, Jul 03 2013
a(n) = number of 2 X 2 matrices having all elements in {0..n} with determinant = permanent. - Indranil Ghosh, Dec 26 2016
Number of additions and multiplications needed to multiply two n X n matrices naively. - Charles R Greathouse IV, Jan 19 2018

Crossrefs

Cf. A100177 (structured prisms); A100145 (more on structured numbers).
Cf. A000578, A045991, A000384, A080859 (first diffs), A103220 (partial sums).
Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.

Programs

Formula

a(n) = A000578(n) + A045991(n). - Zerinvary Lajos, Jun 11 2008
a(n) = A199771(2*n-1) for n > 0. - Reinhard Zumkeller, Nov 23 2011
G.f.: x*(1+8*x+3*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 12, a(0)=1, a(1)=1, a(2)=12. - G. C. Greubel, Jul 31 2015
E.g.f.: x*(2*x^2 + 5*x + 1)*exp(x). - G. C. Greubel, Jul 31 2015
a(n) = Sum_{i=0..n-1} n*(4*i+1) for n>0. - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = 4*log(2) - Pi^2/6. - Vaclav Kotesovec, Oct 04 2016
a(n) = Sum_{i=n^2-n+1..n^2+n-1} i. - Wesley Ivan Hurt, Dec 27 2016
From Peter Bala, Jan 30 2019: (Start)
Let a(n,x) = Product_{k = 0..n} (x - k)/(x + k). Then for positive integer x we have (2*x - 1)*x^2 = Sum_{n >= 0} ((n+1)^5 + n^5)*a(n,x) and (2*x - 1)*x = Sum_{n >= 0} ((n+1)^4 - n^4)*a(n,x). Both identities are also valid for complex x in the half-plane Re(x) > 2. See the Bala link in A036970. Cf. A272378. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi - Pi^2/12 - 2*log(2). - Amiram Eldar, Jul 12 2020

A186424 Odd terms in A186423.

Original entry on oeis.org

1, 3, 11, 17, 33, 43, 67, 81, 113, 131, 171, 193, 241, 267, 323, 353, 417, 451, 523, 561, 641, 683, 771, 817, 913, 963, 1067, 1121, 1233, 1291, 1411, 1473, 1601, 1667, 1803, 1873, 2017, 2091, 2243, 2321, 2481, 2563, 2731, 2817, 2993, 3083, 3267, 3361, 3553, 3651
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 21 2011

Keywords

Comments

Sum of odd square and half of even square. - Vladimir Joseph Stephan Orlovsky, May 20 2011
Numbers m such that 6*m-2 is a square. - Bruno Berselli, Apr 29 2016

Crossrefs

Programs

  • Haskell
    a186424 n = a186424_list !! n
    a186424_list = filter odd a186423_list
    
  • Mathematica
    Table[If[OddQ[n],n^2+((n+1)^2)/2,(n^2)/2+(n+1)^2],{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)
  • Python
    def A186424(n): return (n*(3*n + 2) + 1 if n&1 else n*(3*n + 4) + 2)>>1 # Chai Wah Wu, Jan 31 2023

Formula

From R. J. Mathar, Feb 28 2011: (Start)
G.f.: ( -1-2*x-6*x^2-2*x^3-x^4 ) / ( (1+x)^2*(x-1)^3 ).
a(n) = 3*(1+2*n+2*n^2)/4 + (-1)^n*(1+2*n)/4. (End)
a(n+2) = a(n) + A091999(n+2).
Union of A080859 and A126587: a(2*n) = A080859(n) and a(2*n+1) = A126587(n+1).
From Peter Bala, Feb 13 2021: (Start)
Appears to be the sequence of exponents in the following series expansion:
Sum_{n >= 0} (-1)^n * x^n/Product_{k = 1..n} 1 - x^(2*k-1) = 1 - x - x^3 + x^11 + x^17 - x^33 - x^43 + + - - .... Cf. A053253.
More generally, for nonnegative integer N, we appear to have the identity
Product_{j = 1..N} 1/(1 + x^(2*j-1))*( P(N,x) + Sum_{n >= 1} (-1)^n * x^((2*N+1)*n-N)/Product_{k = 1..n} 1 - x^(2*k-1) ) = 1 - x - x^3 + x^11 + x^17 - x^33 - x^43 + + - - ..., where P(N,x) is a polynomial in x of degree N^2 - 1, with the first few values given empirically by
P(0,x) = 0, P(1,x) = 1, P(2,x) = 1 - x^2 + x^3, P(3,x) = 1 - x^2 + x^5 - x^7 + x^8 and P(4,x) = 1 - x^2 - x^4 + x^5 + x^8 - x^9 + x^12 - x^14 + x^15. Cf. A203568. (End)
E.g.f.: ((2 + 5*x + 3*x^2)*cosh(x) + (1 + 7*x + 3*x^2)*sinh(x))/2. - Stefano Spezia, May 08 2021
Sum_{n>=0} 1/a(n) = sqrt(2)*Pi*sinh(sqrt(2)*Pi/3)/(1+2*cosh(sqrt(2)*Pi/3)). - Amiram Eldar, May 11 2025

A080853 Square array of generalized polygonal numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 7, 1, 1, 5, 16, 19, 11, 1, 1, 6, 25, 37, 33, 16, 1, 1, 7, 36, 61, 67, 51, 22, 1, 1, 8, 49, 91, 113, 106, 73, 29, 1, 1, 9, 64, 127, 171, 181, 154, 99, 37, 1, 1, 10, 81, 169, 241, 276, 265, 211, 129, 46, 1, 1, 11, 100, 217, 323, 391, 406, 365, 277
Offset: 0

Views

Author

Paul Barry, Feb 23 2003

Keywords

Examples

			Rows begin with n>=0, k>=0
1 1 1 1 1 ...
1 2 4 7 11 ...
1 3 9 19 33 ...
1 4 16 37 67 ...
1 5 25 61 113 ...
		

Crossrefs

Programs

  • Maple
    A080853 := proc(n,k)
        binomial(k,0)+n*binomial(k,1)+n^2*binomial(k,2) ;
    end proc:
    seq( seq(A080853(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021

Formula

T(n, k)=C(k, 0)+C(k, 1)n+C(k, 2)n^2=(n^2*k^2-(n^2-2n)*k+2)/2 =(k(k-1)*n^2+2k*n+2)/2
Row n has g.f. (1+(n-2)x+(n^2-n+1)x^2)/(1-x)^3.
Column k has g.f. (C(k-1, 0)+(C(k+1, 2)-2)*x+C(k-1, 2)*x^2)/(1-x)^3.
Diagonals are given by (n^4+(2k-1)*n^3+((k-1)^2+1)*n^2+(1-(k-1)^2)*n+2)/2.
Antidiagonal sums are 1, 2, 4, 9, 22, 53, 119,... = (d+1)*(2*d^4-7*d^3+27*d^2-22*d+120)/120 = sum_{k=0..d} T(d-k,k), first differences in A116701, d>=0. - R. J. Mathar, Oct 01 2021

A220083 a(n) = (15*n^2 + 9*n + 2)/2.

Original entry on oeis.org

1, 13, 40, 82, 139, 211, 298, 400, 517, 649, 796, 958, 1135, 1327, 1534, 1756, 1993, 2245, 2512, 2794, 3091, 3403, 3730, 4072, 4429, 4801, 5188, 5590, 6007, 6439, 6886, 7348, 7825, 8317, 8824, 9346, 9883, 10435, 11002, 11584, 12181, 12793, 13420, 14062
Offset: 0

Views

Author

Bruno Berselli, Dec 10 2012

Keywords

Comments

Sequence related to the heptagonal numbers (A000566) by a(n) = n*A000566(n)-(n-1)*A000566(n-1).
Other similar sequences:
A005408(m) = (m+1)*A001477(m+1)-m*A001477(m), A001477 = nonn. integers;
A000326(m) = m*A000217(n)-(m-1)*A000217(m-1), A000217 = triangular numbers;
A003215(m) = (m+1)*A000290(m+1)-n*A000290(m), A000290 = square numbers;
A081267(m) = (m+1)*A000326(m+1)-n*A000326(m), A000326 = pentagonal numbers;
A080859(m) = (m+1)*A000384(m+1)-n*A000384(m), A000384 = hexagonal numbers;
A214675(m) = m*A000567(m)-(m-1)*A000567(m-1), A000567 = octagonal numbers.

Crossrefs

Programs

Formula

G.f.: (1+10*x+4*x^2)/(1-x)^3.
Sum( a(i), i=0..n ) = A006597(n+1).
a(n) + a(-n) = A010005(n) for n>0.

A201279 a(n) = 6n^2 + 10n + 5.

Original entry on oeis.org

5, 21, 49, 89, 141, 205, 281, 369, 469, 581, 705, 841, 989, 1149, 1321, 1505, 1701, 1909, 2129, 2361, 2605, 2861, 3129, 3409, 3701, 4005, 4321, 4649, 4989, 5341, 5705, 6081, 6469, 6869, 7281, 7705, 8141, 8589, 9049, 9521, 10005, 10501, 11009, 11529, 12061
Offset: 0

Views

Author

Keywords

Comments

Numbers n where 6n-5 is a square of a number type 6n-1.
Also sequence found by reading the line from 5, in the direction 5, 21,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Jul 18 2012
The spiral mentioned above naturally appears on a "graphene" like lattice (planar net 6^3). The opposite diagonal is A080859. - Yuriy Sibirmovsky, Oct 04 2016
First differences of A048395. - Leo Tavares, Nov 24 2021 [Corrected by Omar E. Pol, Dec 26 2021]

Crossrefs

Programs

  • Magma
    [6*n^2 + 10*n + 5: n in [0..60]]; // Vincenzo Librandi, Dec 01 2011
  • Mathematica
    LinearRecurrence[{3,-3,1},{5,21,49},50] (* Vincenzo Librandi, Dec 01 2011 *)
    Table[6 n^2 + 10 n + 5, {n, 0, 44}] (* or *)
    CoefficientList[Series[(1 + x) (5 + x)/(1 - x)^3, {x, 0, 44}], x] (* Michael De Vlieger, Oct 04 2016 *)
  • PARI
    a(n)=6*n^2+10*n+5 \\ Charles R Greathouse IV, Nov 29 2011
    

Formula

G.f.: (1+x)*(5+x)/(1-x)^3. - Colin Barker, Jan 09 2012
a(n) = 1 + A033579(n+1). - Omar E. Pol, Jul 18 2012
a(n) = (n+1)*A001844(n+1)-n*A001844(n). [Bruno Berselli, Jan 15 2013]
From Leo Tavares, Nov 24 2021: (Start)
a(n) = A003154(n+2) - A022144(n+1). See Diamond Frame Stars illustration.
a(n) = A016754(n) + A046092(n+1). (End)

A202804 a(n) = n*(6*n+4).

Original entry on oeis.org

0, 10, 32, 66, 112, 170, 240, 322, 416, 522, 640, 770, 912, 1066, 1232, 1410, 1600, 1802, 2016, 2242, 2480, 2730, 2992, 3266, 3552, 3850, 4160, 4482, 4816, 5162, 5520, 5890, 6272, 6666, 7072, 7490, 7920, 8362, 8816, 9282, 9760, 10250, 10752, 11266, 11792, 12330
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033579 in the same spiral. - Omar E. Pol, Jul 17 2012
Partial sums give A163815. - Leo Tavares, Feb 25 2022

Crossrefs

Programs

  • Maple
    A202804:=n->n*(6*n+4): seq(A202804(n), n=0..100); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Table[n(6n+4),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,10,32},50] (* Harvey P. Dale, Dec 28 2015 *)
  • PARI
    x='x + O('x^50); concat([0], Vec(-2*x*(5 + x)/(x - 1)^3)) \\ Indranil Ghosh, Apr 10 2017

Formula

a(n) = 2*n(3*n+2) = 6*n^2 + 4*n = 2*A045944(n).
a(n) = A080859(n) - 1. - Omar E. Pol, Jul 18 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 28 2015
G.f.: 2*x*(5 + x)/(1 - x)^3. - Indranil Ghosh, Apr 10 2017
a(n) = A003154(n+1) - A005408(n). - Leo Tavares, Feb 25 2022
From Amiram Eldar, Mar 01 2022: (Start)
Sum_{n>=1} 1/a(n) = (Pi/sqrt(3) - 3*log(3) + 3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) - 3/8. (End)
E.g.f.: 2*exp(x)*x*(5 + 3*x). - Elmo R. Oliveira, Dec 12 2024

A272378 a(n) = n*(6*n^2 - 8*n + 3).

Original entry on oeis.org

0, 1, 22, 99, 268, 565, 1026, 1687, 2584, 3753, 5230, 7051, 9252, 11869, 14938, 18495, 22576, 27217, 32454, 38323, 44860, 52101, 60082, 68839, 78408, 88825, 100126, 112347, 125524, 139693, 154890, 171151, 188512, 207009, 226678, 247555, 269676, 293077
Offset: 0

Views

Author

Vincenzo Librandi, Apr 29 2016

Keywords

Crossrefs

Programs

  • Magma
    [n*(6*n^2 - 8*n + 3): n in [0..50]];
    
  • Mathematica
    Table[n (6 n^2 - 8 n + 3), {n, 0, 50}]
    LinearRecurrence[{4,-6,4,-1},{0,1,22,99},40] (* Harvey P. Dale, Dec 29 2017 *)
  • PARI
    vector(100, n, n--; n*(6*n^2 - 8*n + 3)) \\ Altug Alkan, Apr 29 2016
    
  • Python
    for n in range(0,10**3):print(n*(6*n**2-8*n+3),end=", ") # Soumil Mandal, Apr 30 2016

Formula

G.f.: x*(1 + 18*x + 17*x^2)/(1 - x)^4.
E.g.f.: x*(1 + 10*x + 6*x^2)*exp(x).
a(n) = n*A080859(n+1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3.
See page 7 in Brent's paper:
a(n) = n^2*A000384(n) - n*(n-1)*A000384(n-1).
A272379(n) = n^2*a(n) - n*(n-1)*a(n-1).
From Peter Bala, Jan 30 2019: (Start)
Let a(n,x) = Product_{k = 0..n} (x - k)/(x + k). Then for positive integer x we have x^2*(6*x^2 - 8*x + 3) = Sum_{n >= 0} ((n+1)^7 + n^7)*a(n,x) and x*(6*x^2 - 8*x + 3) = Sum_{n >= 0} ((n+1)^6 - n^6)*a(n,x). Both identities are also valid for complex x in the half-plane Re(x) > 7/2. See the Bala link in A036970. Cf. A272379. (End)

A319384 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), a(0)=1, a(1)=5, a(2)=9, a(3)=21, a(4)=29.

Original entry on oeis.org

1, 5, 9, 21, 29, 49, 61, 89, 105, 141, 161, 205, 229, 281, 309, 369, 401, 469, 505, 581, 621, 705, 749, 841, 889, 989, 1041, 1149, 1205, 1321, 1381, 1505, 1569, 1701, 1769, 1909, 1981, 2129, 2205, 2361, 2441, 2605, 2689, 2861, 2949, 3129, 3221, 3409, 3505, 3701, 3801, 4005, 4109, 4321, 4429, 4649, 4761, 4989, 5105, 5341, 5461
Offset: 0

Views

Author

Paul Curtz, Sep 18 2018

Keywords

Comments

The two bisections A136392(n+1)=1,9,29,61, ... and A201279(n)=5,21,49, ... are in the hexagonal spiral based on 2*n+1:
.
67--65--63--61
/ \
69 33--31--29 59
/ / \ \
71 35 11---9 27 57
/ / / \ \ \
73 37 13 1 7 25 55
/ / / / / /
39 15 3---5 23 53
\ \ / /
41 17--19--21 51
\ /
43--45--47--49
.
A201279(n) - A136892(n) = 20*n.

Crossrefs

In the spiral: A003154(n+1), A080859, A126587, A136392, A201279, A227776.
Partial sums of A382154.

Programs

  • Magma
    [(6*n^2 + 6*n + 5 - (2*n + 1)*(-1)^n)/4 : n in [0..50]]; // Wesley Ivan Hurt, Jan 19 2021
    
  • Mathematica
    Table[(6 n^2 + 6 n + 5 - (2 n + 1)*(-1)^n)/4, {n, 0, 80}] (* Wesley Ivan Hurt, Jan 07 2021 *)
  • PARI
    Vec((1 + x^2)*(1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ Colin Barker, Jun 05 2019
    
  • Python
    def A319384(n): return (n*(3*n+4)+3 if n&1 else n*(3*n+2)+2)>>1 # Chai Wah Wu, Mar 25 2025

Formula

a(2*n) = A136392(n+1), a(2*n+1) = A201279(n).
a(-n) = a(n).
a(2*n) + a(2*n+1) = 6*A001844(n).
a(n) = (6*n^2 + 6*n + 5 - (2*n + 1)*(-1)^n)/4. - Wesley Ivan Hurt, Oct 04 2018
G.f.: (1 + x^2)*(1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^2). - Colin Barker, Jun 05 2019
a(n) = A104585(n) + A032766(n+1). - Alex W. Nowak, Jan 08 2021

Extensions

More terms from N. J. A. Sloane, Mar 23 2025

A340970 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * binomial(2*j,j).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 33, 45, 1, 1, 9, 67, 245, 195, 1, 1, 11, 113, 721, 1921, 873, 1, 1, 13, 171, 1593, 8179, 15525, 3989, 1, 1, 15, 241, 2981, 23649, 95557, 127905, 18483, 1, 1, 17, 323, 5005, 54691, 361449, 1137709, 1067925, 86515, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2021

Keywords

Examples

			Square array begins:
  1,   1,     1,     1,      1,       1, ...
  1,   3,     5,     7,      9,      11, ...
  1,  11,    33,    67,    113,     171, ...
  1,  45,   245,   721,   1593,    2981, ...
  1, 195,  1921,  8179,  23649,   54691, ...
  1, 873, 15525, 95557, 361449, 1032801, ...
		

Crossrefs

Columns k=0..3 give A000012, A026375, A084771, A340973.
Rows n=0..2 give A000012, A005408, A080859.
Main diagonal gives A340971.
Cf. A340968.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * Binomial[2*j, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, k^j*binomial(n, j)*binomial(2*j, j));
    
  • PARI
    T(n, k) = polcoef((1+(2*k+1)*x+(k*x)^2)^n, n);

Formula

G.f. of column k: 1/sqrt((1 - x) * (1 - (4*k+1)*x)).
T(n,k) = [x^n] (1+(2*k+1)*x+(k*x)^2)^n.
n * T(n,k) = (2*k+1) * (2*n-1) * T(n-1,k) - (4*k+1) * (n-1) * T(n-2,k) for n > 1.
E.g.f. of column k: exp((2*k+1)*x) * BesselI(0,2*k*x). - Ilya Gutkovskiy, Feb 01 2021
From Seiichi Manyama, Aug 19 2025: (Start)
T(n,k) = (1/4)^n * Sum_{j=0..n} (4*k+1)^j * binomial(2*j,j) * binomial(2*(n-j),n-j).
T(n,k) = Sum_{j=0..n} (-k)^j * (4*k+1)^(n-j) * binomial(n,j) * binomial(2*j,j). (End)

A354594 a(n) = n^2 + 2*floor(n/2)^2.

Original entry on oeis.org

0, 1, 6, 11, 24, 33, 54, 67, 96, 113, 150, 171, 216, 241, 294, 323, 384, 417, 486, 523, 600, 641, 726, 771, 864, 913, 1014, 1067, 1176, 1233, 1350, 1411, 1536, 1601, 1734, 1803, 1944, 2017, 2166, 2243, 2400, 2481, 2646, 2731, 2904
Offset: 0

Views

Author

David Lovler, Jun 01 2022

Keywords

Comments

The first bisection is A033581, the second bisection is A080859. - Bernard Schott, Jun 07 2022

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 + 2 Floor[n/2]^2
    Table[a[n], {n, 0, 90}]    (* A354594 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 6, 11, 24}, 60]
  • PARI
    a(n) = n^2 + 2*(n\2)^2;

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), n >= 5.
a(n) = A000290(n) + 2*A008794(n).
G.f.: x*(1 + 5*x + 3*x^2 + 3*x^3)/((1 - x)^3*(1 + x)^2).
E.g.f.: (x*(1 + 3*x)*cosh(x) + (1 + 3*x + 3*x^2)*sinh(x))/2. - Stefano Spezia, Jun 07 2022
Showing 1-10 of 12 results. Next