cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A048395 Sum of consecutive nonsquares.

Original entry on oeis.org

0, 5, 26, 75, 164, 305, 510, 791, 1160, 1629, 2210, 2915, 3756, 4745, 5894, 7215, 8720, 10421, 12330, 14459, 16820, 19425, 22286, 25415, 28824, 32525, 36530, 40851, 45500, 50489, 55830, 61535, 67616, 74085, 80954, 88235, 95940, 104081
Offset: 0

Views

Author

Patrick De Geest, Mar 15 1999

Keywords

Comments

Relationship with natural numbers: a(4) = (first term + last term)*n = (10+15)*3 = (25)*3 = 75; a(5) = (17+24)*4 = (41)*4 = 164; ...
Also (X*Y*Z)/(X+Y+Z) of primitive Pythagorean triples (X,Y,Z=Y+1) as described in A046092 and A001844. - Lambert Herrgesell (zero815(AT)googlemail.com), Dec 13 2005
First differences are in A201279. - J. M. Bergot, Jun 22 2013 [Corrected by Omar E. Pol, Dec 26 2021]

Examples

			Between 3^2 and 4^2 we have 10+11+12+13+14+15 which is 75 or a(4).
		

Crossrefs

Programs

  • Haskell
    a048395 0 = 0
    a048395 n = a199771 (2 * n)  -- Reinhard Zumkeller, Oct 26 2015
  • Mathematica
    Table[n(1+2*n(1+n)),{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,5,26,75},40] (* Harvey P. Dale, Nov 01 2013 *)
  • PARI
    v0=[1,0,1]; M=[1, 2, 2; -2, -1, -2; 2, 2, 3];
    g(v)=v[1]*v[2]*v[3]/(v[1]+v[2]+v[3]);
    a(n)=g(v0*M^n);
    for(i=0,50,print1(a(i),", ")) \\ Lambert Herrgesell (zero815(AT)googlemail.com), Dec 13 2005
    

Formula

a(n) = 2*n^3 + 2*n^2 + n.
a(n) = Sum_{j=0..n} ((n+j+2)^2 - j^2 + 1). - Zerinvary Lajos, Sep 13 2006
O.g.f.: x(x+5)(1+x)/(1-x)^4. - R. J. Mathar, Jun 12 2008
a(n) = A199771(2*n) for n > 0. - Reinhard Zumkeller, Nov 23 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=5, a(2)=26, a(3)=75. - Harvey P. Dale, Nov 01 2013
E.g.f.: exp(x)*x*(5 + 8*x + 2*x^2). - Stefano Spezia, Jun 25 2022

A136392 a(n) = 6*n^2 - 10*n + 5.

Original entry on oeis.org

1, 9, 29, 61, 105, 161, 229, 309, 401, 505, 621, 749, 889, 1041, 1205, 1381, 1569, 1769, 1981, 2205, 2441, 2689, 2949, 3221, 3505, 3801, 4109, 4429, 4761, 5105, 5461, 5829, 6209, 6601, 7005, 7421, 7849, 8289, 8741, 9205, 9681, 10169, 10669, 11181, 11705, 12241
Offset: 1

Views

Author

Gary W. Adamson, Dec 28 2007

Keywords

Comments

Binomial transform of [1, 8, 12, 0, 0, 0, ...].
Numbers k such that 6*k - 5 is the square of a number of the form 6*k - 5, contained in A199859. - Eleonora Echeverri-Toro, Nov 29 2011
Central terms of the triangle A033292. - Reinhard Zumkeller, Feb 06 2012
Sequence found by reading the line from 1, in the direction 1, 9, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

Formula

a(n) = n*(3*n - 2) + (n-1)*(3*n - 5), n > 1.
a(n) = n*A016777(n-1) + (n-1)*A016777(n-2).
a(n) = a(n-1) + 12*n - 16 (with a(1)=1). - Vincenzo Librandi, Nov 24 2010
G.f.: x*(1+x)*(1+5*x)/(1-x)^3. - Colin Barker, Jan 09 2012
a(n) = 1 + A033580(n-1). - Omar E. Pol, Jul 18 2012
a(n) = A059722(n) - A059722(n-1). - J. M. Bergot, Nov 02 2012
a(n) = A000567(n-1) + A000567(n). - Charlie Marion, May 29 2024
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(2*x*(3*x - 2) + 5) - 5.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A319384 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), a(0)=1, a(1)=5, a(2)=9, a(3)=21, a(4)=29.

Original entry on oeis.org

1, 5, 9, 21, 29, 49, 61, 89, 105, 141, 161, 205, 229, 281, 309, 369, 401, 469, 505, 581, 621, 705, 749, 841, 889, 989, 1041, 1149, 1205, 1321, 1381, 1505, 1569, 1701, 1769, 1909, 1981, 2129, 2205, 2361, 2441, 2605, 2689, 2861, 2949, 3129, 3221, 3409, 3505, 3701, 3801, 4005, 4109, 4321, 4429, 4649, 4761, 4989, 5105, 5341, 5461
Offset: 0

Views

Author

Paul Curtz, Sep 18 2018

Keywords

Comments

The two bisections A136392(n+1)=1,9,29,61, ... and A201279(n)=5,21,49, ... are in the hexagonal spiral based on 2*n+1:
.
67--65--63--61
/ \
69 33--31--29 59
/ / \ \
71 35 11---9 27 57
/ / / \ \ \
73 37 13 1 7 25 55
/ / / / / /
39 15 3---5 23 53
\ \ / /
41 17--19--21 51
\ /
43--45--47--49
.
A201279(n) - A136892(n) = 20*n.

Crossrefs

In the spiral: A003154(n+1), A080859, A126587, A136392, A201279, A227776.
Partial sums of A382154.

Programs

  • Magma
    [(6*n^2 + 6*n + 5 - (2*n + 1)*(-1)^n)/4 : n in [0..50]]; // Wesley Ivan Hurt, Jan 19 2021
    
  • Mathematica
    Table[(6 n^2 + 6 n + 5 - (2 n + 1)*(-1)^n)/4, {n, 0, 80}] (* Wesley Ivan Hurt, Jan 07 2021 *)
  • PARI
    Vec((1 + x^2)*(1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ Colin Barker, Jun 05 2019
    
  • Python
    def A319384(n): return (n*(3*n+4)+3 if n&1 else n*(3*n+2)+2)>>1 # Chai Wah Wu, Mar 25 2025

Formula

a(2*n) = A136392(n+1), a(2*n+1) = A201279(n).
a(-n) = a(n).
a(2*n) + a(2*n+1) = 6*A001844(n).
a(n) = (6*n^2 + 6*n + 5 - (2*n + 1)*(-1)^n)/4. - Wesley Ivan Hurt, Oct 04 2018
G.f.: (1 + x^2)*(1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^2). - Colin Barker, Jun 05 2019
a(n) = A104585(n) + A032766(n+1). - Alex W. Nowak, Jan 08 2021

Extensions

More terms from N. J. A. Sloane, Mar 23 2025

A342138 Array T(n,k) = (n+k)*(3*n+3*k-5)/2 + (3*k+1), read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 3, 2, 5, 8, 7, 10, 13, 16, 15, 18, 21, 24, 27, 26, 29, 32, 35, 38, 41, 40, 43, 46, 49, 52, 55, 58, 57, 60, 63, 66, 69, 72, 75, 78, 77, 80, 83, 86, 89, 92, 95, 98, 101, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156
Offset: 0

Views

Author

Michel Marcus, Mar 01 2021

Keywords

Comments

This is an instance of a storing function on N^2 (injective) with density 1/3.

Examples

			Array begins:
   1  3   8  16  27 ...
   0  5  13  24  38 ...
   2 10  21  35  52 ...
   7 18  32  49  69 ...
  15 29  46  66  89 ...
  ...
		

Crossrefs

Cf. A005449 (first column), A104249 (first row), A140090 (second row), A201279 (diagonal).

Programs

  • PARI
    T(n,k) = (n+k)*(3*n+3*k-5)/2 + (3*k+1);
    matrix(8, 8, n, k, T(n-1, k-1))
Showing 1-4 of 4 results.