A270926 Numbers k such that k*R(k) can be represented as the sum of two nonzero squares, where R(k) is the reverse of the decimal expansion of k.
5, 10, 15, 16, 18, 20, 25, 30, 37, 40, 50, 51, 52, 55, 58, 60, 61, 70, 73, 78, 80, 81, 85, 87, 89, 90, 98, 100, 101, 104, 106, 109, 110, 111, 122, 125, 128, 145, 146, 148, 149, 150, 159, 160, 162, 164, 165, 168, 169, 174, 176, 180, 181, 192, 195, 198, 200, 202, 208, 212, 220, 221, 222
Offset: 1
Examples
For k=5, R(k)=5 and k*R(k)=25, which is 3^2 + 4^2. For k=10, R(k)=1 and k*R(k)=10, which is 1^2 + 3^2. For k=58, R(k)=85 and k*R(k)=4930, which is 13^2 + 69^2.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range@ 222, Length[PowersRepresentations[# FromDigits@ Reverse@ IntegerDigits@ #, 2, 2] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Mar 26 2016 *) stnzsQ[{a_,b_}]:=AllTrue[{a,b},IntegerQ[Sqrt[#]]&]; Select[Range[ 250], Length[ Select[IntegerPartitions[# IntegerReverse[#],{2}],stnzsQ]] >0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 12 2020 *)
-
PARI
isA000404(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))} lista(nn) = for(n=1, nn, if(isA000404(n*eval(concat(Vecrev(Str(n))))), print1(n, ", "))); \\ Altug Alkan, Mar 26 2016
-
Python
# Soumil Mandal, Mar 27 2016 def isHypotenuse(num): a, b = 1, 1 a2, b2 = a**2, b**2 while a2 + b2 <= num: while a2 + b2 <= num: if a2 + b2 == num: return True b += 1 b2 = b**2 a += 1 a2 = a**2 b = 1 b2 = b**2 return False for x in range(20000): if isHypotenuse(x * int(str(x)[::-1])): print(x)
Extensions
More terms from Altug Alkan, Mar 26 2016
Comments