cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A103220 a(n) = n*(n+1)*(3*n^2+n-1)/6.

Original entry on oeis.org

0, 1, 13, 58, 170, 395, 791, 1428, 2388, 3765, 5665, 8206, 11518, 15743, 21035, 27560, 35496, 45033, 56373, 69730, 85330, 103411, 124223, 148028, 175100, 205725, 240201, 278838, 321958, 369895, 422995, 481616, 546128, 616913, 694365, 778890
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 25 2005

Keywords

Comments

Row sums of A103219.
From Bruno Berselli, Dec 10 2010: (Start)
a(n) = n*A002412(n) - Sum_{i=0..n-1} A002412(i). More generally: n^2*(n+1)*(2*d*n-2*d+3)/6 - (Sum_{i=0..n-1} i*(i+1)*(2*d*i-2*d+3))/6 = n * (n+1) * (3*d*n^2-d*n+4*n-2*d+2)/12; in this sequence is d=2.
The inverse binomial transform yields 0, 1, 11, 22, 12, 0, 0 (0 continued). (End)
a(n-1) is also number of ways to place 2 nonattacking semi-queens (see A099152) on an n X n board. - Vaclav Kotesovec, Dec 22 2011
Also, one-half the even-indexed terms of the partial sums of A045947. - J. M. Bergot, Apr 12 2018

Crossrefs

Programs

  • Maple
    for(n=0,100,print1((3*n^4+4*n^3-n)/6,","))
  • Mathematica
    CoefficientList[Series[- x (1 + 8 x + 3 x^2) / (x - 1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,1,13,58,170},40] (* Harvey P. Dale, Jan 23 2016 *)
  • PARI
    a(n)=n*(n+1)*(3*n^2+n-1)/6 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(1+8*x+3*x^2)/(1-x)^5.
a(n) = Sum_{i=1..n} Sum_{j=1..n} max(i,j)^2. - Enrique Pérez Herrero, Jan 15 2013
a(n) = a(n-1) + (2*n-1)*n^2 with a(0)=0, see A015237. - J. M. Bergot, Jun 10 2017
From Wesley Ivan Hurt, Nov 20 2021: (Start)
a(n) = Sum_{k=1..n} k * C(2*k,2).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). (End)
From Peter Bala, Sep 03 2023: (Start)
a(n) = Sum_{1 <= i <= j <= n} (2*i - 1)*(2*j - 1).
Second subdiagonal of A039755. (End)

A099721 a(n) = n^2*(2*n+1).

Original entry on oeis.org

0, 3, 20, 63, 144, 275, 468, 735, 1088, 1539, 2100, 2783, 3600, 4563, 5684, 6975, 8448, 10115, 11988, 14079, 16400, 18963, 21780, 24863, 28224, 31875, 35828, 40095, 44688, 49619, 54900, 60543, 66560, 72963, 79764, 86975, 94608, 102675, 111188, 120159, 129600
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Nov 07 2004

Keywords

Comments

For a right triangle with sides of lengths 8*n^3 + 12*n^2 + 8*n + 2, 4*n^4 + 8*n^3 + 4*n^2, and 4*n^4 + 8*n^3 + 12*n^2 + 8*n + 2, dividing the area by the perimeter gives a(n). - J. M. Bergot, Jul 30 2013
This sequence is the difference between the centered icosahedral (or cuboctahedral) numbers (A005902(n)) and the centered octagonal pyramidal numbers (A000447(n+1)). - Peter M. Chema, Jan 09 2016
a(n) is the sum of the integers in the closed interval (n-1)*n to n*(n+1). - J. M. Bergot, Apr 19 2017

Crossrefs

Programs

Formula

G.f.: x*(3 + 8*x + x^2)/(x-1)^4.
a(n) = A024196(n) - A024196(n-1). - Philippe Deléham, May 07 2012
a(n) = ceiling(Sum_{i=n^2-(n-1)..n^2+(n-1)} s(i)), for n > 0 and integer i, where s(i) are the real solutions to x = i + sqrt(x), and the summation range excludes the integer solutions which occur where i is an oblong number (A002378). The fractional portion of the summation converges to 2/3 for large n. If s(i) is replaced with i, then the summation equals n^2*(2*n-1) = A015237. - Richard R. Forberg, Oct 15 2014
a(n) = A005902(n) - A000447(n+1). - Peter M. Chema, Jan 09 2016
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/6 + 4*log(2) - 4.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 - Pi - 2*log(2) + 4. (End)
From Elmo R. Oliveira, Aug 08 2025: (Start)
E.g.f.: x*(1 + 2*x)*(3 + x)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A000290(n)*A005408(n). (End)

A199771 Row sums of the triangle in A199332.

Original entry on oeis.org

1, 5, 12, 26, 45, 75, 112, 164, 225, 305, 396, 510, 637, 791, 960, 1160, 1377, 1629, 1900, 2210, 2541, 2915, 3312, 3756, 4225, 4745, 5292, 5894, 6525, 7215, 7936, 8720, 9537, 10421, 11340, 12330, 13357, 14459, 15600, 16820, 18081, 19425, 20812, 22286, 23805
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2011

Keywords

Comments

a(n) = Sum_{k=1..n} A199332(n,k);
a(2*n-1) = A015237(n); a(2*n) = A048395(n);
a(n+1) = A200252(n).

Programs

  • Haskell
    a199771  = sum . a199332_row
    
  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{1,5,12,26,45,75},50] (* Harvey P. Dale, Apr 27 2019 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,2,1,-4,1,2]^(n-1)*[1;5;12;26;45;75])[1,1] \\ Charles R Greathouse IV, Jun 18 2017

Formula

G.f.: x*( 1+3*x+x^2+x^3 ) / ((1+x)^2*(x-1)^4). - R. J. Mathar, Nov 24 2011
a(n) = n*(3+2*n^2+4*n+(-1)^n)/8. - R. J. Mathar, Jun 23 2023

A262000 a(n) = n^2*(7*n - 5)/2.

Original entry on oeis.org

0, 1, 18, 72, 184, 375, 666, 1078, 1632, 2349, 3250, 4356, 5688, 7267, 9114, 11250, 13696, 16473, 19602, 23104, 27000, 31311, 36058, 41262, 46944, 53125, 59826, 67068, 74872, 83259, 92250, 101866, 112128, 123057, 134674, 147000, 160056, 173863, 188442, 203814, 220000
Offset: 0

Views

Author

Bruno Berselli, Sep 08 2015

Keywords

Comments

Also, structured enneagonal prism numbers.

Examples

			For n=8, a(8) = 8*(7*0+1)+8*(7*1+1)+8*(7*2+1)+8*(7*3+1)+8*(7*4+1)+8*(7*5+1)+8*(7*6+1)+8*(7*7+1) = 1632.
		

Crossrefs

Cf. similar sequences with the formula n^2*(k*n - k + 2)/2: A000290 (k=0), A002411 (k=1), A000578 (k=2), A050509 (k=3), A015237 (k=4), A006597 (k=5), A100176 (k=6), this sequence (k=7), A103532 (k=8).

Programs

  • Magma
    [n^2*(7*n-5)/2: n in [0..40]];
  • Mathematica
    Table[n^2 (7 n - 5)/2, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{0,1,18,72},50] (* Harvey P. Dale, Oct 04 2016 *)
  • PARI
    vector(40, n, n--; n^2*(7*n-5)/2)
    
  • Sage
    [n^2*(7*n-5)/2 for n in (0..40)]
    

Formula

G.f.: x*(1 + 14*x + 6*x^2)/(1 - x)^4.
a(n) = Sum_{i=0..n-1} n*(7*i+1) for n>0, a(0)=0.
a(n+1) + a(-n) = A069125(n+1).
Sum_{i>0} 1/a(i) = 1.082675669875907610300284768825... = (42*(log(14) + 2*(cos(Pi/7)*log(cos(3*Pi/14)) + log(sin(Pi/7))*sin(Pi/14) - log(cos(Pi/14)) * sin(3*Pi/14))) + 21*Pi*tan(3*Pi/14))/75 - Pi^2/15. - Vaclav Kotesovec, Oct 04 2016
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(2 + 16*x + 7*x^2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A272378 a(n) = n*(6*n^2 - 8*n + 3).

Original entry on oeis.org

0, 1, 22, 99, 268, 565, 1026, 1687, 2584, 3753, 5230, 7051, 9252, 11869, 14938, 18495, 22576, 27217, 32454, 38323, 44860, 52101, 60082, 68839, 78408, 88825, 100126, 112347, 125524, 139693, 154890, 171151, 188512, 207009, 226678, 247555, 269676, 293077
Offset: 0

Views

Author

Vincenzo Librandi, Apr 29 2016

Keywords

Crossrefs

Programs

  • Magma
    [n*(6*n^2 - 8*n + 3): n in [0..50]];
    
  • Mathematica
    Table[n (6 n^2 - 8 n + 3), {n, 0, 50}]
    LinearRecurrence[{4,-6,4,-1},{0,1,22,99},40] (* Harvey P. Dale, Dec 29 2017 *)
  • PARI
    vector(100, n, n--; n*(6*n^2 - 8*n + 3)) \\ Altug Alkan, Apr 29 2016
    
  • Python
    for n in range(0,10**3):print(n*(6*n**2-8*n+3),end=", ") # Soumil Mandal, Apr 30 2016

Formula

G.f.: x*(1 + 18*x + 17*x^2)/(1 - x)^4.
E.g.f.: x*(1 + 10*x + 6*x^2)*exp(x).
a(n) = n*A080859(n+1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3.
See page 7 in Brent's paper:
a(n) = n^2*A000384(n) - n*(n-1)*A000384(n-1).
A272379(n) = n^2*a(n) - n*(n-1)*a(n-1).
From Peter Bala, Jan 30 2019: (Start)
Let a(n,x) = Product_{k = 0..n} (x - k)/(x + k). Then for positive integer x we have x^2*(6*x^2 - 8*x + 3) = Sum_{n >= 0} ((n+1)^7 + n^7)*a(n,x) and x*(6*x^2 - 8*x + 3) = Sum_{n >= 0} ((n+1)^6 - n^6)*a(n,x). Both identities are also valid for complex x in the half-plane Re(x) > 7/2. See the Bala link in A036970. Cf. A272379. (End)

A256141 Square array read by antidiagonals upwards: T(n,k), n>=0, k>=0, in which row n lists the partial sums of the n-th row of the square array of A256140.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 7, 9, 5, 1, 1, 6, 9, 16, 11, 6, 1, 1, 7, 11, 25, 19, 15, 7, 1, 1, 8, 13, 36, 29, 28, 19, 8, 1, 1, 9, 15, 49, 41, 45, 37, 27, 9, 1, 1, 10, 17, 64, 55, 66, 61, 64, 29, 10, 1, 1, 11, 19, 81, 71, 91, 91, 125, 67, 33, 11, 1, 1, 12, 21, 100, 89, 120, 127, 216, 129, 76, 37, 12, 1
Offset: 0

Views

Author

Omar E. Pol, Mar 16 2015

Keywords

Comments

Questions:
Is also A130667 a row of this square array?
Is also A116522 a row of this square array?
Is also A116526 a row of this square array?
Is also A116525 a row of this square array?
Is also A116524 a row of this square array?

Examples

			The corner of the square array with the first 15 terms of the first 12 rows looks like this:
--------------------------------------------------------------------------
A000012: 1, 1, 1,  1,  1,  1,  1,   1,   1,   1,   1,   1,   1,   1,   1
A000027: 1, 2, 3,  4,  5,  6,  7,   8,   9,  10,  11,  12,  13,  14,  15
A006046: 1, 3, 5,  9, 11, 15, 19,  27,  29,  33,  37,  45,  49,  57,  65
A130665: 1, 4, 7, 16, 19, 28, 37,  64,  67,  76,  85, 112, 121, 148, 175
A116520: 1, 5, 9, 25, 29, 45, 61, 125, 129, 145, 161, 225, 241, 305, 369
A130667? 1, 6,11, 36, 41, 66, 91, 216, 221, 246, 271, 396, 421, 546, 671
A116522? 1, 7,13, 49, 55, 91,127, 343, 349, 385, 421, 637, 673, 889,1105
A161342: 1, 8,15, 64, 71,120,169, 512, 519, 568, 617, 960,1009,1352,1695
A116526? 1, 9,17, 81, 89,153,217, 729, 737, 801, 865,1377,1441,1953,2465
.......: 1,10,19,100,109,190,271,1000,1009,1090,1171,1900,1981,2710,3439
A116525? 1,11,21,121,131,231,331,1331,1341,1441,1541,2541,2641,3641,4641
.......: 1,12,23,144,155,276,397,1728,1739,1860,1981,3312,3422,4764,6095
		

Crossrefs

First five rows are A000012, A000027, A006046, A130665, A116520. Row 7 is A161342.
First eight columns are A000012, A000027, A005408, A000290, A028387, A000384, A003215, A000578. Column 9 is A081437. Column 11 is A015237. Columns 13-15 are A005915, A005917, A000583.

A141680 Triangle read by rows: T(n,m) = (n/m)*binomial(n,m) if m divides n, otherwise 0.

Original entry on oeis.org

1, 4, 1, 9, 0, 1, 16, 12, 0, 1, 25, 0, 0, 0, 1, 36, 45, 40, 0, 0, 1, 49, 0, 0, 0, 0, 0, 1, 64, 112, 0, 140, 0, 0, 0, 1, 81, 0, 252, 0, 0, 0, 0, 0, 1, 100, 225, 0, 0, 504, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 07 2008

Keywords

Comments

Row sums are: 1, 5, 10, 29, 26, 122, 50, 317, 334, 830, ... A105862.

Examples

			1;
4, 1;
9, 0, 1;
16, 12, 0, 1;
25, 0, 0, 0, 1;
36, 45, 40, 0, 0, 1;
49, 0, 0, 0, 0, 0, 1;
64, 112, 0, 140, 0, 0, 0, 1;
81, 0, 252, 0, 0, 0, 0, 0, 1;
100, 225, 0, 0, 504, 0, 0, 0, 0, 1;
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] = If[Mod[n, m] == 0, n/m, 0]*Binomial[n, m]; Table[Table[t[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[%]

Formula

T(n,m) = A126988(n,m)*binomial(n,m).
T(n,1) = n^2. T(n,n) = 1. T(2n,2) = A015237(n).

A143218 Triangle read by rows, A127775 * A000012 * A127775; 1<=k<=n.

Original entry on oeis.org

1, 3, 9, 5, 15, 25, 7, 21, 35, 49, 9, 27, 45, 63, 81, 11, 33, 55, 77, 99, 121, 13, 39, 65, 91, 117, 143, 169, 15, 45, 75, 105, 135, 165, 195, 225, 17, 51, 85, 119, 153, 187, 221, 255, 289, 19, 57, 95, 133, 171, 209, 247, 285, 323, 361, 21, 63, 105, 147, 189, 231, 273, 315, 357, 399, 441
Offset: 1

Views

Author

Gary W. Adamson, Jul 30 2008

Keywords

Examples

			First few rows of the triangle =
   1;
   3,  9;
   5, 15, 25;
   7, 21, 35, 49;
   9, 27, 45, 63,  81;
  11, 33, 55, 77,  99, 121;
  13, 39, 65, 91, 117, 143, 169;
  ...
T(5,3) = 45 = 9*5 = (2*5 - 1) * (2*3 - 1).
		

Crossrefs

Programs

  • Magma
    [(2*n-1)*(2*k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 12 2022
    
  • Mathematica
    Table[(2*k-1)*(2*n-1), {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 12 2022 *)
  • SageMath
    flatten([[(2*n-1)*(2*k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 12 2022

Formula

Triangle read by rows, A127775 * A000012 * A127775.
T(n, k) = (2*n - 1) * (2*k - 1), 1<=k<=n.
Sum_{k=1..n} T(n, k) = A015237(n) = n^2 * (2*n-1).
From G. C. Greubel, Jul 12 2022: (Start)
T(n, k) = A131507(n,k) * A127775(n,k).
T(n, n) = A016754(n-1) = (2*n-1)^2, n >= 1.
T(2*n-1, n) = A014634(n-1), n >= 1.
T(2*n-2, n-1) = A033567(n-1), n >= 2.
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A024598(n), n >= 1. (End)

A280391 Number of 2 X 2 matrices with all elements in {0,...,n} with permanent = determinant * n.

Original entry on oeis.org

1, 12, 25, 57, 81, 141, 169, 259, 297, 413, 441, 621, 625, 825, 873, 1079, 1089, 1403, 1369, 1739, 1729, 2021, 2025, 2507, 2433, 2859, 2905, 3301, 3249, 4029, 3721, 4509, 4305, 4793, 4989, 5551, 5329, 6027, 6025, 6807, 6561, 7917, 7225, 8357, 8121, 8677, 8649, 9843, 9481, 10889
Offset: 0

Views

Author

Indranil Ghosh, Jan 02 2017

Keywords

Comments

All the values except a(1) are odd.
From Robert Israel, Jan 02 2017: (Start)
Number of solutions to (n+1)*x*y = (n-1)*z*w for x,y,z,w in [0..n].
a(n) >= (2n+1)^2, with equality if n+1 is an odd prime. (End)

Crossrefs

Cf. A280321 (Number of 2 X 2 matrices with all elements in {0,..,n} with permanent*n = determinant).
Cf. A015237 (Number of 2 X 2 matrices having all elements in {0..n} with determinant = permanent).
Cf. A016754 (Number of 2 X 2 matrices having all elements in {0..n} with determinant =2* permanent).
Cf. A280364 (Number of 2 X 2 matrices having all elements in {0..n} with determinant^n = permanent).

Programs

  • Maple
    g:= proc(r,n) if r = 0 then 2*n+1 else nops(select(t -> t <= n and r <= t*n, numtheory:-divisors(r))) fi end proc:
    f:= proc(n) local c;
        if n::even then (2*n+1)^2 + add(g((n+1)*c,n)*g((n-1)*c,n), c=1..n-1)
        else (2*n+1)^2 + add(g((n+1)/2*c,n) * g((n-1)/2*c,n), c=1..2*n-1)
        fi
    end proc:
    map(f, [$0..100]); # Robert Israel, Jan 02 2017
  • Mathematica
    g[r_, n_] := If[r == 0, 2n + 1, Length[Select[Divisors[r], # <= n && r <= # n&]]];
    f[n_] := If[EvenQ[n], (2n + 1)^2 + Sum[g[(n + 1)c, n] g[(n - 1)c, n], {c, 1, n - 1}], (2n + 1)^2 + Sum[g[(n + 1)/2 c, n] g[(n - 1)/2 c, n], {c, 1, 2n - 1}]];
    f /@ Range[0, 100] (* Jean-François Alcover, Jul 29 2020, after Robert Israel *)
  • Python
    def t(n):
        s=0
        for a in range(0,n+1):
            for b in range(0,n+1):
                for c in range(0,n+1):
                    for d in range(0,n+1):
                        if (a*d-b*c)*n==(a*d+b*c):
                            s+=1
        return s
    for i in range(0,201):
        print(t(i))

A247327 Triangle read by rows: T(n,k) = sum of k-th row of n X n square filled with odd numbers 1 through 2*n^2-1 reading across rows left-to-right.

Original entry on oeis.org

1, 4, 12, 9, 27, 45, 16, 48, 80, 112, 25, 75, 125, 175, 225, 36, 108, 180, 252, 324, 396, 49, 147, 245, 343, 441, 539, 637, 64, 192, 320, 448, 576, 704, 832, 960, 81, 243, 405, 567, 729, 891, 1053, 1215, 1377, 100, 300, 500, 700, 900, 1100, 1300, 1500, 1700, 1900, 121, 363
Offset: 1

Views

Author

Kival Ngaokrajang, Sep 13 2014

Keywords

Comments

See illustration in links. Column c(k) = (2*k - 1)*n^2. Diagonal d(m) = (2*n - 2*m + 1)*n^2.

Examples

			Triangle begins:
  1
  4   12
  9   27  45
  16  48  80 112
  25  75 125 175 225
  36 108 180 252 324 396
  49 147 245 343 441 539 637
		

Crossrefs

Column: c(1) = A000290, c(2) = A033428, c(3) = A033429.
Diagonal: d(1) = A015237, d(2) = A015238, d(3) = A015240.
Rows sum: A000538.
Cf. A241016.

Programs

  • PARI
    trg(nn) = {for (n=1, nn, mm = matrix(n, n, i, j, (2*j-1) + (2*n)*(i-1)); for (i=1, n, print1(sum(j=1, n, mm[i, j]), ", ");); print(););} \\ Michel Marcus, Sep 15 2014
Showing 1-10 of 15 results. Next