cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A015237 a(n) = (2*n - 1)*n^2.

Original entry on oeis.org

0, 1, 12, 45, 112, 225, 396, 637, 960, 1377, 1900, 2541, 3312, 4225, 5292, 6525, 7936, 9537, 11340, 13357, 15600, 18081, 20812, 23805, 27072, 30625, 34476, 38637, 43120, 47937, 53100, 58621, 64512
Offset: 0

Views

Author

Keywords

Comments

Structured hexagonal prism numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of divisors of 60^(n-1) for n>0. - J. Lowell, Aug 30 2008
The sum of the 2*n+1 numbers between n*(n+1) and (n+1)*(n+2) gives a(n+1). - J. M. Bergot, Apr 17 2013
Partial sums of A080859. - J. M. Bergot, Jul 03 2013
a(n) = number of 2 X 2 matrices having all elements in {0..n} with determinant = permanent. - Indranil Ghosh, Dec 26 2016
Number of additions and multiplications needed to multiply two n X n matrices naively. - Charles R Greathouse IV, Jan 19 2018

Crossrefs

Cf. A100177 (structured prisms); A100145 (more on structured numbers).
Cf. A000578, A045991, A000384, A080859 (first diffs), A103220 (partial sums).
Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.

Programs

Formula

a(n) = A000578(n) + A045991(n). - Zerinvary Lajos, Jun 11 2008
a(n) = A199771(2*n-1) for n > 0. - Reinhard Zumkeller, Nov 23 2011
G.f.: x*(1+8*x+3*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 12, a(0)=1, a(1)=1, a(2)=12. - G. C. Greubel, Jul 31 2015
E.g.f.: x*(2*x^2 + 5*x + 1)*exp(x). - G. C. Greubel, Jul 31 2015
a(n) = Sum_{i=0..n-1} n*(4*i+1) for n>0. - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = 4*log(2) - Pi^2/6. - Vaclav Kotesovec, Oct 04 2016
a(n) = Sum_{i=n^2-n+1..n^2+n-1} i. - Wesley Ivan Hurt, Dec 27 2016
From Peter Bala, Jan 30 2019: (Start)
Let a(n,x) = Product_{k = 0..n} (x - k)/(x + k). Then for positive integer x we have (2*x - 1)*x^2 = Sum_{n >= 0} ((n+1)^5 + n^5)*a(n,x) and (2*x - 1)*x = Sum_{n >= 0} ((n+1)^4 - n^4)*a(n,x). Both identities are also valid for complex x in the half-plane Re(x) > 2. See the Bala link in A036970. Cf. A272378. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi - Pi^2/12 - 2*log(2). - Amiram Eldar, Jul 12 2020

A202654 Number of ways to place 3 nonattacking semi-queens on an n X n board.

Original entry on oeis.org

0, 0, 3, 52, 370, 1620, 5285, 14168, 33012, 69240, 133815, 242220, 415558, 681772, 1076985, 1646960, 2448680, 3552048, 5041707, 7018980, 9603930, 12937540, 17184013, 22533192, 29203100, 37442600, 47534175, 59796828, 74589102, 92312220, 113413345, 138388960
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 22 2011

Keywords

Comments

Two semi-queens do not attack each other if they are in the same northwest-southeast diagonal.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x^3*(17 x^3 + 69 x^2 + 31 x + 3)/(x - 1)^7, {x, 0, 32}], x] (* Michael De Vlieger, Aug 19 2019 *)

Formula

a(n) = 1/6*(n-2)*(n-1)*n*(n^3-5*n^2+8*n-3).
G.f.: -x^3*(17*x^3 + 69*x^2 + 31*x + 3)/(x-1)^7.

A202655 Number of ways to place 4 nonattacking semi-queens on an n X n board.

Original entry on oeis.org

0, 0, 0, 7, 223, 2429, 15045, 66122, 230074, 675798, 1745318, 4073993, 8764753, 17630795, 33522531, 60756612, 105666148, 177293340, 288246972, 455749371, 702898611, 1060173961, 1567213681, 2274896558, 3247759614, 4566786770, 6332604226, 8669120733, 11727651845
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 22 2011

Keywords

Comments

Two semi-queens do not attack each other if they are in the same northwest-southeast diagonal.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x^4*(151 x^6 + 1022 x^5 + 2233 x^4 + 2132 x^3 + 1001 x^2 + 174 x + 7)/((x - 1)^9*(x + 1)^2), {x, 0, 29}], x] (* Michael De Vlieger, Aug 19 2019 *)
    LinearRecurrence[{7,-19,21,6,-42,42,-6,-21,19,-7,1},{0,0,0,7,223,2429,15045,66122,230074,675798,1745318},30] (* Harvey P. Dale, Mar 17 2025 *)

Formula

a(n) = n^8/24 - 2*n^7/3 + 41*n^6/9 - 257*n^5/15 + 341*n^4/9 - 97*n^3/2 + 2341*n^2/72 - 87*n/10 + (n/2 - 1/2)*floor(n/2).
G.f.: -x^4*(151*x^6 + 1022*x^5 + 2233*x^4 + 2132*x^3 + 1001*x^2 + 174*x + 7)/((x-1)^9*(x+1)^2).

A202656 Number of ways to place 5 nonattacking semi-queens on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 23, 1104, 16945, 141696, 810746, 3568352, 12948318, 40514560, 112720393, 285073712, 666143975, 1456288512, 3007576740, 5913372864, 11138305068, 20202100224, 35433809451, 60316600080, 99947225741, 161638967424, 255701773822, 396439174560, 603407582570
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 22 2011

Keywords

Comments

Two semi-queens do not attack each other if they are in the same northwest-southeast diagonal.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x^5*(1899 x^9 + 16515 x^8 + 60512 x^7 + 116784 x^6 + 137646 x^5 + 98222 x^4 + 41688 x^3 + 9608 x^2 + 943 x + 23)/((x - 1)^11*(x + 1)^4), {x, 0, 27}], x] (* Michael De Vlieger, Aug 19 2019 *)

Formula

a(n) = n^10/120 - 2*n^9/9 + 95*n^8/36 - 183*n^7/10 + 14663*n^6/180 - 1201*n^5/5 + 16753*n^4/36 - 25364*n^3/45 + 68293*n^2/180 - 12781*n/120 + (n^3/2 - 6*n^2 + 39*n/2 - 61/4)*floor(n/2).
G.f.: -x^5*(1899*x^9 + 16515*x^8 + 60512*x^7 + 116784*x^6 + 137646*x^5 + 98222*x^4 + 41688*x^3 + 9608*x^2 + 943*x + 23)/((x-1)^11*(x+1)^4).

A202657 Number of ways to place 6 nonattacking semi-queens on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 83, 6107, 126376, 1377328, 9984758, 54399330, 239675936, 895773148, 2935757573, 8641608781, 23259768860, 58039719112, 135720432200, 299995484600, 631220344328, 1271607596876, 2464466665667, 4613731163831, 8372196591052, 14769606793684, 25395151577010
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 22 2011

Keywords

Comments

Two semi-queens do not attack each other if they are in the same northwest-southeast diagonal.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x^6*(31709 x^16 + 377288 x^15 + 2265487 x^14 + 8441426 x^13 + 22166758 x^12 + 43217858 x^11 + 64805639 x^10 + 75943200 x^9 + 70077016 x^8 + 50738668 x^7 + 28477437 x^6 + 12074418 x^5 + 3711058 x^4 + 771370 x^3 + 96173 x^2 + 5692 x + 83)/((x - 1)^13*(x + 1)^6*(x^2 + x + 1)^2), {x, 0, 26}], x] (* Michael De Vlieger, Aug 19 2019 *)

Formula

a(n) = n^12/720 - n^11/18 + 73*n^10/72 - 72247*n^9/6480 + 5909*n^8/72 - 320653*n^7/756 + 112795*n^6/72 - 8892919*n^5/2160 + 8086231*n^4/1080 - 5740271*n^3/648 + 2598425*n^2/432 - 13161367*n/7560 + (n^5/4 - 77*n^4/12 + 757*n^3/12 - 7007*n^2/24 + 14581*n/24 - 1677/4)*floor(n/2) + (64*n/9 - 88/9)*floor(n/3) + (8*n/3 - 52/9)*floor((n + 1)/3).
G.f.: -x^6*(31709*x^16 + 377288*x^15 + 2265487*x^14 + 8441426*x^13 + 22166758*x^12 + 43217858*x^11 + 64805639*x^10 + 75943200*x^9 + 70077016*x^8 + 50738668*x^7 + 28477437*x^6 + 12074418*x^5 + 3711058*x^4 + 771370*x^3 + 96173*x^2 + 5692*x + 83)/((x-1)^13*(x+1)^6*(x^2+x+1)^2).

A203246 Second elementary symmetric function of the first n terms of (1,1,2,2,3,3,4,4,...).

Original entry on oeis.org

1, 5, 13, 31, 58, 106, 170, 270, 395, 575, 791, 1085, 1428, 1876, 2388, 3036, 3765, 4665, 5665, 6875, 8206, 9790, 11518, 13546, 15743, 18291, 21035, 24185, 27560, 31400, 35496, 40120, 45033, 50541, 56373, 62871, 69730, 77330, 85330, 94150, 103411, 113575
Offset: 2

Views

Author

Clark Kimberling, Dec 31 2011

Keywords

Comments

Second subdiagonal of A246117. - Peter Bala, Aug 15 2014

Crossrefs

Cf. A203298, A203299, A246117, A212523 (odd bisection), A103220 (even bisection).

Programs

  • Mathematica
    f[k_] := Floor[(k + 1)/2]; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 50}]  (* A203246 *)

Formula

Conjectural o.g.f.: x^2*(1 + 3*x + x^2 + x^3)/((1 - x^2)^3*(1 - x)^2). - Peter Bala, Aug 15 2014
Conjectural closed form: 64*a(n) = 2*n^2 -16*n/3 -3 +16*n^3/3 +2*n^4 +(-1)^n *(3-2*n^2). - R. J. Mathar, Oct 01 2016
Both conjectures are true. See link. - Sela Fried, Dec 22 2024

A103219 Triangle read by rows: T(n,k) = (n+1-k)*(4*(n+1-k)^2 - 1)/3+2*k*(n+1-k)^2.

Original entry on oeis.org

1, 10, 3, 35, 18, 5, 84, 53, 26, 7, 165, 116, 71, 34, 9, 286, 215, 148, 89, 42, 11, 455, 358, 265, 180, 107, 50, 13, 680, 553, 430, 315, 212, 125, 58, 15, 969, 808, 651, 502, 365, 244, 143, 66, 17, 1330, 1131, 936, 749, 574, 415, 276, 161, 74, 19, 1771, 1530, 1293
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 26 2005

Keywords

Comments

The triangle is generated from the product B * A of the infinite lower triangular matrices A =
1 0 0 0...
3 1 0 0...
5 3 1 0...
7 5 3 1...
...
and B =
1 0 0 0...
1 3 0 0...
1 3 5 0...
1 3 5 7...
...

Examples

			Triangle begins:
1,
10,3,
35,18,5,
84,53,26,7,
165,116,71,34,9,
286,215,148,89,42,11,
		

Crossrefs

Row sums give A103220.
T(n, 0) = (n+1)*(4*(n+1)^2 - 1)/3 = A000447(n+1);
T(n+1, n)= 8*n+2 = A017089(n+1);
Cf. A103218 (for product A*B), A103220.

Programs

  • Mathematica
    T[n_, k_] := (n + 1 - k)*(4*(n + 1 - k)^2 - 1)/3 + 2*k*(n + 1 - k)^2; Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Feb 10 2005 *)
  • PARI
    T(n,k)=(n+1-k)*(4*(n+1-k)^2-1)/3+2*k*(n+1-k)^2; for(i=0,10, for(j=0,i,print1(T(i,j),","));print())

A185375 a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.

Original entry on oeis.org

0, 0, 1, 91, 966, 5082, 18447, 53053, 129948, 282948, 562989, 1043119, 1824130, 3040830, 4868955, 7532721, 11313016, 16556232, 23683737, 33201987, 45713278, 61927138, 82672359, 108909669, 141745044, 182443660
Offset: 0

Views

Author

Wesley Transue, Jan 21 2012

Keywords

Comments

Third column (k=2) of A008958.

Crossrefs

Third column (k=2) of A008958 Triangle of central factorial numbers.
Cf. A103220.

Programs

  • Magma
    [n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90 : n in [0..50]]; // Wesley Ivan Hurt, Apr 23 2021
  • Mathematica
    Table[n*(n - 1)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(10*n - 17)/90, {n, 0, 50}] (* G. C. Greubel, Jun 28 2017 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,1,91,966,5082,18447},30] (* Harvey P. Dale, Oct 10 2021 *)
  • PARI
    a(n) = binomial(2*n+1,5)*(10*n-17)/3  \\ Michel Marcus, Jun 18 2013
    

Formula

a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.
a(n) = binomial(2*n+1,5)*(10*n-17)/3.
From G. C. Greubel, Jun 28 2017: (Start)
G.f.: x^2*(1 + 84*x + 350*x^2 + 196*x^3 + 9*x^4)/(1 - x)^7.
E.g.f.: (1/90)*x^2*(45 + 1320 x + 2280 x^2 + 864 x^3 + 80 x^4)*exp(x). (End)
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Wesley Ivan Hurt, Apr 23 2021
a(n) = Sum_{1 <= i <= j <= n-1} (2*i - 1)^2 * (2*j - 1)^2. - Peter Bala, Sep 03 2023

A342372 Triangle T(n,k) of number of ways of arranging q nonattacking semi-queens on an n X n toroidal board, where 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 0, 1, 9, 9, 3, 1, 16, 48, 32, 0, 1, 25, 150, 250, 75, 15, 1, 36, 360, 1200, 1224, 288, 0, 1, 49, 735, 4165, 8869, 6321, 931, 133, 1, 64, 1344, 11648, 43136, 64512, 33024, 4096, 0, 1, 81, 2268, 27972, 160866, 423306, 469800
Offset: 1

Views

Author

Walter Trump, Mar 09 2021

Keywords

Comments

T(0,0):=1 for combinatorial reasons.
A semi-queen can only move horizontal, vertical and parallel to the main diagonal of the board. Moves parallel to the secondary diagonal are not allowed.
Instead of a board on a torus, you can imagine that the semi-queens can leave a flat board on one side and re-enter the board on the other side.

Examples

			  1;
  1,  1;
  1,  4,   0;
  1,  9,   9,   3;
  1, 16,  48,  32,  0;
  1, 25, 150, 250, 75, 15;
		

Crossrefs

Formula

T(n,0) = 1.
T(n,1) = n^2.
T(n,2) = n^2*(n-1)*(n-2)/2.
T(n,3) = n^2*(n-1)*(n-2)*(n^2-6n+10)/6.
T(2n+1,2n+1) = A006717(n).
T(2n,2n) = 0.

A095873 Triangle T(n,k) = (2*k-1)*(n+k-1)*(n-k+1) read by rows, 1<=k<=n.

Original entry on oeis.org

1, 4, 9, 9, 24, 25, 16, 45, 60, 49, 25, 72, 105, 112, 81, 36, 105, 160, 189, 180, 121, 49, 144, 225, 280, 297, 264, 169, 64, 189, 300, 385, 432, 429, 364, 225, 81, 240, 385, 504, 585, 616, 585, 480, 289, 100, 297, 480, 637, 756, 825
Offset: 1

Views

Author

Gary W. Adamson, Jun 10 2004

Keywords

Comments

Matrix square of A158405.

Examples

			[1 0 0 / 1 3 0 / 1 3 5]^2 = [1 0 0 / 4 9 0 / 9 24 25]. Delete the zeros and
read by rows:
1;
4, 9;
9, 24, 25;
16,45, 60, 49;
25,72,105,112, 81;
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1966.

Crossrefs

Programs

  • Maple
    A095873 := proc(n,k)
            (2*k-1)*(n+k-1)*(n-k+1) ;
    end proc:
    seq(seq(A095873(n,k),k=1..n),n=1..13) ; # R. J. Mathar, Oct 30 2011
  • Mathematica
    Table[(2k-1)(n+k-1)(n-k+1),{n,10},{k,n}]//Flatten (* Harvey P. Dale, May 03 2018 *)

Formula

T(n,k) = (2*k-1)*A094728(n,k).
Sum_{k=1..n} T(n,k)= n*(n+1)*(3*n^2+n-1)/6 = A103220(n). - R. J. Mathar, Oct 30 2011

Extensions

Definition in closed form by R. J. Mathar, Oct 30 2011
Showing 1-10 of 11 results. Next