cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Wesley Transue

Wesley Transue's wiki page.

Wesley Transue has authored 2 sequences.

A218768 a(n+2) = (2*n+1)^2*a(n+1) + (2*n+1)*(2*n-1)*a(n) with a(1)=1 and a(2)=2.

Original entry on oeis.org

1, 2, 21, 555, 27930, 2297295, 280737765, 47773195470, 10803712844925, 3134455177028175, 1135027918156081950, 501797959522466381775, 265999339071854103540825, 166538120746634232882536250, 121585839578169857291258983125, 102384090433785464586295830691875
Offset: 1

Author

Wesley Transue, Nov 05 2012

Keywords

Programs

  • Mathematica
    Table[DifferenceRoot[Function[{f,k}, {f[k+2]==(2k+1)^2 f[k+1]+(2k+1)(2k-1)f[k], f[1]==1, f[2]==2}]][n], {n,1,15}] (* Corrected by Wesley Transue, Dec 23 2019 *)
    Nest[Append[#1, (2 #2 + 1)^2*#1[[#2 + 1]] + (2 #2 + 1) (2 #2 - 1) #1[[-2]]] & @@ {#, Length@ # - 1} &, {1, 2}, 14] (* Michael De Vlieger, Dec 24 2019 *)
    RecurrenceTable[{a[1]==1,a[2]==2,a[n+2]==(2n+1)^2 a[n+1]+(2n+1)(2n-1) a[n]},a,{n,20}] (* Harvey P. Dale, Sep 12 2021 *)
  • PARI
    seq(n)={my(a=vector(n)); a[1]=1; a[2]=2; for(n=3, #a, a[n]=(2*n-3)^2*a[n-1] + (2*n-3)*(2*n-5)*a[n-2]); a} \\ Andrew Howroyd, Dec 24 2019

Formula

a(n) = (e/Pi)*Integral_{z=-infinity..infinity} z^(2*n) K(0, sqrt(1+z^2)), where K(0, x) is the modified Bessel function of the second kind with order 0 (empirical observation).
a(1) = 1, a(2) = 2, a(n) = (2*n-3)^2*a(n-1) + (2*n-3)*(2*n-5)*a(n-2) for n > 2. - Andrew Howroyd, Dec 24 2019

Extensions

Offset corrected by Wesley Transue, Dec 23 2019

A185375 a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.

Original entry on oeis.org

0, 0, 1, 91, 966, 5082, 18447, 53053, 129948, 282948, 562989, 1043119, 1824130, 3040830, 4868955, 7532721, 11313016, 16556232, 23683737, 33201987, 45713278, 61927138, 82672359, 108909669, 141745044, 182443660
Offset: 0

Author

Wesley Transue, Jan 21 2012

Keywords

Comments

Third column (k=2) of A008958.

Crossrefs

Third column (k=2) of A008958 Triangle of central factorial numbers.
Cf. A103220.

Programs

  • Magma
    [n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90 : n in [0..50]]; // Wesley Ivan Hurt, Apr 23 2021
  • Mathematica
    Table[n*(n - 1)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(10*n - 17)/90, {n, 0, 50}] (* G. C. Greubel, Jun 28 2017 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,1,91,966,5082,18447},30] (* Harvey P. Dale, Oct 10 2021 *)
  • PARI
    a(n) = binomial(2*n+1,5)*(10*n-17)/3  \\ Michel Marcus, Jun 18 2013
    

Formula

a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.
a(n) = binomial(2*n+1,5)*(10*n-17)/3.
From G. C. Greubel, Jun 28 2017: (Start)
G.f.: x^2*(1 + 84*x + 350*x^2 + 196*x^3 + 9*x^4)/(1 - x)^7.
E.g.f.: (1/90)*x^2*(45 + 1320 x + 2280 x^2 + 864 x^3 + 80 x^4)*exp(x). (End)
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Wesley Ivan Hurt, Apr 23 2021
a(n) = Sum_{1 <= i <= j <= n-1} (2*i - 1)^2 * (2*j - 1)^2. - Peter Bala, Sep 03 2023