cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A202654 Number of ways to place 3 nonattacking semi-queens on an n X n board.

Original entry on oeis.org

0, 0, 3, 52, 370, 1620, 5285, 14168, 33012, 69240, 133815, 242220, 415558, 681772, 1076985, 1646960, 2448680, 3552048, 5041707, 7018980, 9603930, 12937540, 17184013, 22533192, 29203100, 37442600, 47534175, 59796828, 74589102, 92312220, 113413345, 138388960
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 22 2011

Keywords

Comments

Two semi-queens do not attack each other if they are in the same northwest-southeast diagonal.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x^3*(17 x^3 + 69 x^2 + 31 x + 3)/(x - 1)^7, {x, 0, 32}], x] (* Michael De Vlieger, Aug 19 2019 *)

Formula

a(n) = 1/6*(n-2)*(n-1)*n*(n^3-5*n^2+8*n-3).
G.f.: -x^3*(17*x^3 + 69*x^2 + 31*x + 3)/(x-1)^7.

A202655 Number of ways to place 4 nonattacking semi-queens on an n X n board.

Original entry on oeis.org

0, 0, 0, 7, 223, 2429, 15045, 66122, 230074, 675798, 1745318, 4073993, 8764753, 17630795, 33522531, 60756612, 105666148, 177293340, 288246972, 455749371, 702898611, 1060173961, 1567213681, 2274896558, 3247759614, 4566786770, 6332604226, 8669120733, 11727651845
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 22 2011

Keywords

Comments

Two semi-queens do not attack each other if they are in the same northwest-southeast diagonal.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x^4*(151 x^6 + 1022 x^5 + 2233 x^4 + 2132 x^3 + 1001 x^2 + 174 x + 7)/((x - 1)^9*(x + 1)^2), {x, 0, 29}], x] (* Michael De Vlieger, Aug 19 2019 *)
    LinearRecurrence[{7,-19,21,6,-42,42,-6,-21,19,-7,1},{0,0,0,7,223,2429,15045,66122,230074,675798,1745318},30] (* Harvey P. Dale, Mar 17 2025 *)

Formula

a(n) = n^8/24 - 2*n^7/3 + 41*n^6/9 - 257*n^5/15 + 341*n^4/9 - 97*n^3/2 + 2341*n^2/72 - 87*n/10 + (n/2 - 1/2)*floor(n/2).
G.f.: -x^4*(151*x^6 + 1022*x^5 + 2233*x^4 + 2132*x^3 + 1001*x^2 + 174*x + 7)/((x-1)^9*(x+1)^2).

A202656 Number of ways to place 5 nonattacking semi-queens on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 23, 1104, 16945, 141696, 810746, 3568352, 12948318, 40514560, 112720393, 285073712, 666143975, 1456288512, 3007576740, 5913372864, 11138305068, 20202100224, 35433809451, 60316600080, 99947225741, 161638967424, 255701773822, 396439174560, 603407582570
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 22 2011

Keywords

Comments

Two semi-queens do not attack each other if they are in the same northwest-southeast diagonal.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x^5*(1899 x^9 + 16515 x^8 + 60512 x^7 + 116784 x^6 + 137646 x^5 + 98222 x^4 + 41688 x^3 + 9608 x^2 + 943 x + 23)/((x - 1)^11*(x + 1)^4), {x, 0, 27}], x] (* Michael De Vlieger, Aug 19 2019 *)

Formula

a(n) = n^10/120 - 2*n^9/9 + 95*n^8/36 - 183*n^7/10 + 14663*n^6/180 - 1201*n^5/5 + 16753*n^4/36 - 25364*n^3/45 + 68293*n^2/180 - 12781*n/120 + (n^3/2 - 6*n^2 + 39*n/2 - 61/4)*floor(n/2).
G.f.: -x^5*(1899*x^9 + 16515*x^8 + 60512*x^7 + 116784*x^6 + 137646*x^5 + 98222*x^4 + 41688*x^3 + 9608*x^2 + 943*x + 23)/((x-1)^11*(x+1)^4).

A342372 Triangle T(n,k) of number of ways of arranging q nonattacking semi-queens on an n X n toroidal board, where 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 0, 1, 9, 9, 3, 1, 16, 48, 32, 0, 1, 25, 150, 250, 75, 15, 1, 36, 360, 1200, 1224, 288, 0, 1, 49, 735, 4165, 8869, 6321, 931, 133, 1, 64, 1344, 11648, 43136, 64512, 33024, 4096, 0, 1, 81, 2268, 27972, 160866, 423306, 469800
Offset: 1

Views

Author

Walter Trump, Mar 09 2021

Keywords

Comments

T(0,0):=1 for combinatorial reasons.
A semi-queen can only move horizontal, vertical and parallel to the main diagonal of the board. Moves parallel to the secondary diagonal are not allowed.
Instead of a board on a torus, you can imagine that the semi-queens can leave a flat board on one side and re-enter the board on the other side.

Examples

			  1;
  1,  1;
  1,  4,   0;
  1,  9,   9,   3;
  1, 16,  48,  32,  0;
  1, 25, 150, 250, 75, 15;
		

Crossrefs

Formula

T(n,0) = 1.
T(n,1) = n^2.
T(n,2) = n^2*(n-1)*(n-2)/2.
T(n,3) = n^2*(n-1)*(n-2)*(n^2-6n+10)/6.
T(2n+1,2n+1) = A006717(n).
T(2n,2n) = 0.
Showing 1-4 of 4 results.