A202654 Number of ways to place 3 nonattacking semi-queens on an n X n board.
0, 0, 3, 52, 370, 1620, 5285, 14168, 33012, 69240, 133815, 242220, 415558, 681772, 1076985, 1646960, 2448680, 3552048, 5041707, 7018980, 9603930, 12937540, 17184013, 22533192, 29203100, 37442600, 47534175, 59796828, 74589102, 92312220, 113413345, 138388960
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Christopher R. H. Hanusa, Thomas Zaslavsky, A q-queens problem. VII. Combinatorial types of nonattacking chess riders, arXiv:1906.08981 [math.CO], 2019.
- V. Kotesovec, Non-attacking chess pieces
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
Programs
-
Mathematica
Rest@ CoefficientList[Series[-x^3*(17 x^3 + 69 x^2 + 31 x + 3)/(x - 1)^7, {x, 0, 32}], x] (* Michael De Vlieger, Aug 19 2019 *)
Formula
a(n) = 1/6*(n-2)*(n-1)*n*(n^3-5*n^2+8*n-3).
G.f.: -x^3*(17*x^3 + 69*x^2 + 31*x + 3)/(x-1)^7.
Comments