cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A015237 a(n) = (2*n - 1)*n^2.

Original entry on oeis.org

0, 1, 12, 45, 112, 225, 396, 637, 960, 1377, 1900, 2541, 3312, 4225, 5292, 6525, 7936, 9537, 11340, 13357, 15600, 18081, 20812, 23805, 27072, 30625, 34476, 38637, 43120, 47937, 53100, 58621, 64512
Offset: 0

Views

Author

Keywords

Comments

Structured hexagonal prism numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of divisors of 60^(n-1) for n>0. - J. Lowell, Aug 30 2008
The sum of the 2*n+1 numbers between n*(n+1) and (n+1)*(n+2) gives a(n+1). - J. M. Bergot, Apr 17 2013
Partial sums of A080859. - J. M. Bergot, Jul 03 2013
a(n) = number of 2 X 2 matrices having all elements in {0..n} with determinant = permanent. - Indranil Ghosh, Dec 26 2016
Number of additions and multiplications needed to multiply two n X n matrices naively. - Charles R Greathouse IV, Jan 19 2018

Crossrefs

Cf. A100177 (structured prisms); A100145 (more on structured numbers).
Cf. A000578, A045991, A000384, A080859 (first diffs), A103220 (partial sums).
Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.

Programs

Formula

a(n) = A000578(n) + A045991(n). - Zerinvary Lajos, Jun 11 2008
a(n) = A199771(2*n-1) for n > 0. - Reinhard Zumkeller, Nov 23 2011
G.f.: x*(1+8*x+3*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 12, a(0)=1, a(1)=1, a(2)=12. - G. C. Greubel, Jul 31 2015
E.g.f.: x*(2*x^2 + 5*x + 1)*exp(x). - G. C. Greubel, Jul 31 2015
a(n) = Sum_{i=0..n-1} n*(4*i+1) for n>0. - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = 4*log(2) - Pi^2/6. - Vaclav Kotesovec, Oct 04 2016
a(n) = Sum_{i=n^2-n+1..n^2+n-1} i. - Wesley Ivan Hurt, Dec 27 2016
From Peter Bala, Jan 30 2019: (Start)
Let a(n,x) = Product_{k = 0..n} (x - k)/(x + k). Then for positive integer x we have (2*x - 1)*x^2 = Sum_{n >= 0} ((n+1)^5 + n^5)*a(n,x) and (2*x - 1)*x = Sum_{n >= 0} ((n+1)^4 - n^4)*a(n,x). Both identities are also valid for complex x in the half-plane Re(x) > 2. See the Bala link in A036970. Cf. A272378. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi - Pi^2/12 - 2*log(2). - Amiram Eldar, Jul 12 2020

A103532 Number of divisors of 240^n.

Original entry on oeis.org

1, 20, 81, 208, 425, 756, 1225, 1856, 2673, 3700, 4961, 6480, 8281, 10388, 12825, 15616, 18785, 22356, 26353, 30800, 35721, 41140, 47081, 53568, 60625, 68276, 76545, 85456, 95033, 105300, 116281, 128000, 140481, 153748, 167825, 182736
Offset: 0

Views

Author

J. Lowell, Aug 30 2008

Keywords

Comments

Geometric interpretation: Take a simple cubical grid of size (2n+1). Number the coordinates along each axis from 1 to (2n+1). Select only the cells that have at least two odd coordinates, and discard the rest. The number of selected cells is a(n). - Arun Giridhar, Mar 27 2015

Examples

			a(2) = 81 because 240^2 has 81 divisors.
a(2) = 81 because a 5 X 5 X 5 grid has 81 cells with at least two odd coordinates each, coordinate numbering starting at 1.
		

Crossrefs

Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.

Programs

  • Magma
    [(4*n+1)*(n+1)^2: n in [0..45]]; // Vincenzo Librandi, Feb 10 2016
  • Maple
    A103532 := proc(n) (4*n+1)*(n+1)^2 ; end proc: # R. J. Mathar, Aug 31 2008
  • Mathematica
    Table[(4 n + 1) (n + 1)^2, {n, 0, 40}] (* Stefan Steinerberger, Aug 31 2008 *)
    DivisorSigma[0,240^Range[0,40]] (* or *) LinearRecurrence[{4,-6,4,-1},{1,20,81,208},40] (* Harvey P. Dale, Jan 21 2013 *)

Formula

From R. J. Mathar and Stefan Steinerberger, Aug 31 2008: (Start)
a(n) = (4*n+1)*(n+1)^2.
G.f.: (1+16x+7x^2)/(1-x)^4.
Inverse binomial transform: 1, 19, 42, 24, 0 (0 continued). (End)
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3. - Harvey P. Dale, Jan 21 2013
a(n) = (n+1)*A001107(n+1), where A001107 are the partial sums of A017007. - J. M. Bergot, Jul 08 2013
a(n) = Sum_{i=0..n} (n+1)*(8*i+1). [Bruno Berselli, Sep 08 2015]
Sum_{n>=0} 1/a(n) = 2*Pi/9 - Pi^2/18 + 4*log(2)/3 = 1.07401658592825... . - Vaclav Kotesovec, Oct 04 2016
E.g.f.: exp(x)*(1 + 19*x + 21*x^2 + 4*x^3). - Stefano Spezia, Jan 31 2025
Sum_{n>=0} (-1)^n/a(n) = 2*sqrt(2)*Pi/9 - Pi^2/36 - (4/9)*(log(2) + sqrt(2)*log(sqrt(2)-1)). - Amiram Eldar, Aug 15 2025

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Aug 31 2008
Example corrected by Harvey P. Dale, Jan 21 2013

A006597 a(n) = n^2*(5*n-3)/2.

Original entry on oeis.org

0, 1, 14, 54, 136, 275, 486, 784, 1184, 1701, 2350, 3146, 4104, 5239, 6566, 8100, 9856, 11849, 14094, 16606, 19400, 22491, 25894, 29624, 33696, 38125, 42926, 48114, 53704, 59711, 66150, 73036, 80384, 88209, 96526, 105350, 114696, 124579, 135014, 146016, 157600
Offset: 0

Views

Author

Keywords

Comments

Structured heptagonal prism numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Apart from 0, partial sums of A220083. - Bruno Berselli, Dec 11 2012

References

  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 29.

Crossrefs

Cf. A100177 - structured prisms; A100145 for more on structured numbers.
Cf. similar sequences, with the formula (k*n - k + 2)*n^2/2, listed in A262000.

Programs

Formula

a(n) = (1/6)*(15*n^3 - 9*n^2). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
G.f.: x*(1+10*x+4*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n-1} n*(5*i+1) for n>0. - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = 1.1080093773051638036... = (sqrt(5*(5 - 2*sqrt(5)))*Pi - Pi^2 - 5*sqrt(5)*arccoth(sqrt(5)) + (25*log(5))/2)/9. - Vaclav Kotesovec, Oct 04 2016
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(2 + 12*x + 5*x^2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A006592(n)/4. (End)

Extensions

Name corrected by Arkadiusz Wesolowski, Jul 20 2011

A050509 House numbers (version 2): a(n) = (n+1)^3 + (n+1)*Sum_{i=0..n} i.

Original entry on oeis.org

1, 10, 36, 88, 175, 306, 490, 736, 1053, 1450, 1936, 2520, 3211, 4018, 4950, 6016, 7225, 8586, 10108, 11800, 13671, 15730, 17986, 20448, 23125, 26026, 29160, 32536, 36163, 40050, 44206, 48640, 53361, 58378, 63700, 69336, 75295, 81586, 88218, 95200, 102541
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 28 1999

Keywords

Comments

Also as a(n) = (1/6)*(9*n^3 - 3*n^2), n>0: structured pentagonal prism numbers (Cf. A100177 - structured prisms; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of inequivalent tetrahedral edge colorings using at most n+1 colors so that no color appears only once. - David Nacin, Feb 22 2017

Examples

			        *     *
a(2) = * * + * * = 10.
       * *   * *
		

Crossrefs

Cf. similar sequences, with the formula (k*n - k + 2)*n^2/2, listed in A262000.

Programs

  • Magma
    [(3*n+2)*(n+1)^2/2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
    
  • Mathematica
    Table[((1+n)^2*(2+3n))/2,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,10,36,88},40] (* Harvey P. Dale, Jun 26 2011 *)
  • PARI
    a(n)=(1/2)*(3*n+2)*(n+1)^2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = A000578(n+1) + (n+1)*A000217(n).
a(n) = (1/2)*(3*n+2)*(n+1)^2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=10, a(2)=36, a(3)=88. - Harvey P. Dale, Jun 26 2011
G.f.: (1+6*x+2*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n} (n+1)*(3*i+1). - Bruno Berselli, Sep 08 2015
Sum_{n>=0} 1/a(n) = 9*log(3) - sqrt(3)*Pi - Pi^2/3 = 1.15624437161388... . - Vaclav Kotesovec, Oct 04 2016
E.g.f.: exp(x)*(2 + 18*x + 17*x^2 + 3*x^3)/2. - Elmo R. Oliveira, Aug 06 2025

A100176 Structured octagonal prism numbers.

Original entry on oeis.org

1, 16, 63, 160, 325, 576, 931, 1408, 2025, 2800, 3751, 4896, 6253, 7840, 9675, 11776, 14161, 16848, 19855, 23200, 26901, 30976, 35443, 40320, 45625, 51376, 57591, 64288, 71485, 79200, 87451, 96256, 105633, 115600, 126175, 137376, 149221, 161728, 174915, 188800
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Number of divisors of 120^(n-1). - J. Lowell, Aug 30 2008
Partial sums of A214675. - J. M. Bergot, Jul 08 2013

Crossrefs

Cf. A100177 (structured prisms), A100145 (for more on structured numbers).
Cf. similar sequences, with the formula (k*n - k + 2)*n^2/2, listed in A262000.

Programs

Formula

a(n) = 3*n^3 - 2*n^2.
G.f.: x*(1+12*x+5*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n-1} n*(6*i+1). - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = sqrt(3)*Pi/8 - Pi^2/12 + 9*log(3)/8 = 1.0936465529153418... . - Vaclav Kotesovec, Oct 04 2016
a(n) = n*A000567(n) = n^2 * A016777(n-1). - Bruce J. Nicholson, Aug 10 2017
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(1 + 7*x + 3*x^2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

Extensions

More terms from Zerinvary Lajos, Jun 29 2006
Showing 1-5 of 5 results.