A081267 Diagonal of triangular spiral in A051682.
1, 9, 26, 52, 87, 131, 184, 246, 317, 397, 486, 584, 691, 807, 932, 1066, 1209, 1361, 1522, 1692, 1871, 2059, 2256, 2462, 2677, 2901, 3134, 3376, 3627, 3887, 4156, 4434, 4721, 5017, 5322, 5636, 5959, 6291, 6632, 6982, 7341, 7709, 8086, 8472, 8867, 9271
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Milan Janjić, Two Enumerative Functions
- Richard J. Mathar, Bivariate generating functions enumerating non-bonding dominoes on rectangular boards, arXiv:2404.18806 (2024) Table 2.
- Richard J. Mathar, Bivariate Generating Functions Enumerating Non-Bonding Dominoes on Rectangular Boards, arXiv:2404.18806 [math.CO], 2024. See p. 7.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[(9*n^2 + 7*n + 2)/2: n in [0..50]]; // Vincenzo Librandi, Aug 14 2014
-
Mathematica
LinearRecurrence[{3,-3,1},{1,9,26},50] (* Harvey P. Dale, Aug 13 2014 *) CoefficientList[Series[(1 + 6 x + 2 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 14 2014 *)
-
PARI
a(n)=(9*n^2+7*n+2)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = C(n, 0) + 8*C(n, 1) + 9*C(n, 2).
a(n) = (9*n^2 + 7*n + 2)/2.
G.f.: (1 + 6*x + 2*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), for n > 2. a(n) = right term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 0 0 / 3 1 0 / 5 3 1]. M^n * [1 1 1] = [1 3n+1 a(n)]. - Gary W. Adamson, Dec 22 2004
a(n) = 9*n + a(n-1) - 1 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
E.g.f.: exp(x)*(2 + 16*x + 9*x^2)/2. - Stefano Spezia, Dec 25 2022
Comments