cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A100177 Structured meta-prism numbers, the n-th number from a structured n-gonal prism number sequence.

Original entry on oeis.org

1, 4, 18, 64, 175, 396, 784, 1408, 2349, 3700, 5566, 8064, 11323, 15484, 20700, 27136, 34969, 44388, 55594, 68800, 84231, 102124, 122728, 146304, 173125, 203476, 237654, 275968, 318739, 366300, 418996, 477184, 541233, 611524, 688450, 772416, 863839, 963148, 1070784, 1187200, 1312861, 1448244
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Examples

			There are no 1- or 2-gonal prisms, so 1 and (2n) are used as the first and second terms since all the sequences begin as such.
		

Crossrefs

Cf. A002411, A000578, A050509, A006597, A100176, A100177 - structured prisms; A006484 for other meta structured numbers; and A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(3*n^4-9*n^3+12*n^2): n in [1..50] ]; // Vincenzo Librandi, Aug 02 2011
  • Mathematica
    Table[(3n^4-9n^3+12n^2)/6,{n,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,18,64,175},50] (* Harvey P. Dale, Nov 07 2017 *)
  • PARI
    a(n)=(1/6)*(3*n^4-9*n^3+12*n^2);
    

Formula

a(n) = (1/6)*(3*n^4 - 9*n^3 + 12*n^2).
G.f.: x*(1 - x + 8*x^2 + 4*x^3)/(1-x)^5. - Colin Barker, Jun 08 2012
a(n) = A060354(n) * n = A000124(n-2) * n^2. - Bruce J. Nicholson, Jul 11 2018

A220083 a(n) = (15*n^2 + 9*n + 2)/2.

Original entry on oeis.org

1, 13, 40, 82, 139, 211, 298, 400, 517, 649, 796, 958, 1135, 1327, 1534, 1756, 1993, 2245, 2512, 2794, 3091, 3403, 3730, 4072, 4429, 4801, 5188, 5590, 6007, 6439, 6886, 7348, 7825, 8317, 8824, 9346, 9883, 10435, 11002, 11584, 12181, 12793, 13420, 14062
Offset: 0

Views

Author

Bruno Berselli, Dec 10 2012

Keywords

Comments

Sequence related to the heptagonal numbers (A000566) by a(n) = n*A000566(n)-(n-1)*A000566(n-1).
Other similar sequences:
A005408(m) = (m+1)*A001477(m+1)-m*A001477(m), A001477 = nonn. integers;
A000326(m) = m*A000217(n)-(m-1)*A000217(m-1), A000217 = triangular numbers;
A003215(m) = (m+1)*A000290(m+1)-n*A000290(m), A000290 = square numbers;
A081267(m) = (m+1)*A000326(m+1)-n*A000326(m), A000326 = pentagonal numbers;
A080859(m) = (m+1)*A000384(m+1)-n*A000384(m), A000384 = hexagonal numbers;
A214675(m) = m*A000567(m)-(m-1)*A000567(m-1), A000567 = octagonal numbers.

Crossrefs

Programs

Formula

G.f.: (1+10*x+4*x^2)/(1-x)^3.
Sum( a(i), i=0..n ) = A006597(n+1).
a(n) + a(-n) = A010005(n) for n>0.

A262000 a(n) = n^2*(7*n - 5)/2.

Original entry on oeis.org

0, 1, 18, 72, 184, 375, 666, 1078, 1632, 2349, 3250, 4356, 5688, 7267, 9114, 11250, 13696, 16473, 19602, 23104, 27000, 31311, 36058, 41262, 46944, 53125, 59826, 67068, 74872, 83259, 92250, 101866, 112128, 123057, 134674, 147000, 160056, 173863, 188442, 203814, 220000
Offset: 0

Views

Author

Bruno Berselli, Sep 08 2015

Keywords

Comments

Also, structured enneagonal prism numbers.

Examples

			For n=8, a(8) = 8*(7*0+1)+8*(7*1+1)+8*(7*2+1)+8*(7*3+1)+8*(7*4+1)+8*(7*5+1)+8*(7*6+1)+8*(7*7+1) = 1632.
		

Crossrefs

Cf. similar sequences with the formula n^2*(k*n - k + 2)/2: A000290 (k=0), A002411 (k=1), A000578 (k=2), A050509 (k=3), A015237 (k=4), A006597 (k=5), A100176 (k=6), this sequence (k=7), A103532 (k=8).

Programs

  • Magma
    [n^2*(7*n-5)/2: n in [0..40]];
  • Mathematica
    Table[n^2 (7 n - 5)/2, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{0,1,18,72},50] (* Harvey P. Dale, Oct 04 2016 *)
  • PARI
    vector(40, n, n--; n^2*(7*n-5)/2)
    
  • Sage
    [n^2*(7*n-5)/2 for n in (0..40)]
    

Formula

G.f.: x*(1 + 14*x + 6*x^2)/(1 - x)^4.
a(n) = Sum_{i=0..n-1} n*(7*i+1) for n>0, a(0)=0.
a(n+1) + a(-n) = A069125(n+1).
Sum_{i>0} 1/a(i) = 1.082675669875907610300284768825... = (42*(log(14) + 2*(cos(Pi/7)*log(cos(3*Pi/14)) + log(sin(Pi/7))*sin(Pi/14) - log(cos(Pi/14)) * sin(3*Pi/14))) + 21*Pi*tan(3*Pi/14))/75 - Pi^2/15. - Vaclav Kotesovec, Oct 04 2016
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(2 + 16*x + 7*x^2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A006592 a(n) = 10*n^3 - 6*n^2.

Original entry on oeis.org

0, 4, 56, 216, 544, 1100, 1944, 3136, 4736, 6804, 9400, 12584, 16416, 20956, 26264, 32400, 39424, 47396, 56376, 66424, 77600, 89964, 103576, 118496, 134784, 152500, 171704, 192456, 214816, 238844, 264600, 292144, 321536, 352836, 386104, 421400, 458784, 498316, 540056
Offset: 0

Views

Author

Keywords

References

  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 29.

Programs

  • Magma
    [10*n^3-6*n^2: n in [0..40]]; // Vincenzo Librandi, Jul 20 2011
    
  • Mathematica
    Table[10n^3-6n^2,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,4,56,216},50] (* Harvey P. Dale, Aug 13 2012 *)
  • PARI
    a(n)=10*n^3-6*n^2;

Formula

a(n) = 4 * A006597(n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=4, a(2)=56, a(3)=216. - Harvey P. Dale, Aug 13 2012
From G. C. Greubel, Oct 18 2018: (Start)
G.f.: 4*(x + 10*x^2 + 4*x^3)/(1 - x)^4.
E.g.f.: 2*x*(2 + 12*x + 5*x^2)*exp(x). (End)

Extensions

Name corrected by Arkadiusz Wesolowski, Jul 20 2011

A329530 a(n) = n * (7*binomial(n, 2) + 1).

Original entry on oeis.org

0, 1, 16, 66, 172, 355, 636, 1036, 1576, 2277, 3160, 4246, 5556, 7111, 8932, 11040, 13456, 16201, 19296, 22762, 26620, 30891, 35596, 40756, 46392, 52525, 59176, 66366, 74116, 82447, 91380, 100936, 111136, 122001, 133552, 145810, 158796, 172531, 187036, 202332, 218440
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2019

Keywords

Comments

Centered heptagonal prism numbers.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 144.

Crossrefs

Centered m-gonal prism numbers: A100175 (m = 3), A059722 (m = 4), A006564 (m = 5), A005915 (m = 6), this sequence (m = 7), A139757 (m = 8), A006566 (m = 9).

Programs

  • Mathematica
    Table[n (7 Binomial[n, 2] + 1), {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 + 12 x + 8 x^2)/(1 - x)^4, {x, 0, nmax}], x]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 16, 66}, 41]

Formula

G.f.: x * (1 + 12*x + 8*x^2) / (1 - x)^4.
E.g.f.: exp(x) * x * (2 + 14*x + 7*x^2) / 2.
a(n) = n * (7*n^2 - 7*n + 2) / 2.
a(n) = n * (7*A000217(n-1) + 1).
a(n) = n * A069099(n).
Showing 1-5 of 5 results.