A262000
a(n) = n^2*(7*n - 5)/2.
Original entry on oeis.org
0, 1, 18, 72, 184, 375, 666, 1078, 1632, 2349, 3250, 4356, 5688, 7267, 9114, 11250, 13696, 16473, 19602, 23104, 27000, 31311, 36058, 41262, 46944, 53125, 59826, 67068, 74872, 83259, 92250, 101866, 112128, 123057, 134674, 147000, 160056, 173863, 188442, 203814, 220000
Offset: 0
For n=8, a(8) = 8*(7*0+1)+8*(7*1+1)+8*(7*2+1)+8*(7*3+1)+8*(7*4+1)+8*(7*5+1)+8*(7*6+1)+8*(7*7+1) = 1632.
-
[n^2*(7*n-5)/2: n in [0..40]];
-
Table[n^2 (7 n - 5)/2, {n, 0, 40}]
LinearRecurrence[{4,-6,4,-1},{0,1,18,72},50] (* Harvey P. Dale, Oct 04 2016 *)
-
vector(40, n, n--; n^2*(7*n-5)/2)
-
[n^2*(7*n-5)/2 for n in (0..40)]
A257238
Triangle T(n, k) = n^3 - k^3, 0 <= k < = n.
Original entry on oeis.org
0, 1, 0, 8, 7, 0, 27, 26, 19, 0, 64, 63, 56, 37, 0, 125, 124, 117, 98, 61, 0, 216, 215, 208, 189, 152, 91, 0, 343, 342, 335, 316, 279, 218, 127, 0, 512, 511, 504, 485, 448, 387, 296, 169, 0, 729, 728, 721, 702, 665, 604, 513, 386, 217, 0, 1000, 999, 992, 973, 936, 875, 784, 657, 488, 271, 0
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 0
1: 1 0
2: 8 7 0
3: 27 26 19 0
4: 64 63 56 37 0
5: 125 124 117 98 61 0
6: 216 215 208 189 152 91 0
7: 343 342 335 316 279 218 127 0
8: 512 511 504 485 448 387 296 169 0
9: 729 728 721 702 665 604 513 386 217 0
10: 1000 999 992 973 936 875 784 657 488 271 0
...
-
for n from 0 to 10 do seq(n^3-k^3,k=0..n) od; # Robert Israel, May 10 2018
-
Table[n^3-k^3,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 02 2021 *)
A340242
Square array read by upward antidiagonals: T(n,k) is the number of n-ary strings of length k containing 000.
Original entry on oeis.org
1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 107, 1, 13, 96, 425, 1021, 1037, 238, 1, 15, 133, 756, 2621, 4831, 3555, 520, 1, 17, 176, 1225, 5611, 15569, 22276, 11961, 1121, 1, 19, 225, 1856, 10627, 40091, 90085, 100768, 39667, 2391
Offset: 2
For n = 4 and k = 5, there are 40 strings: {00000, 00001, 00002, 00003, 00010, 00011, 00012, 00013, 00020, 00021, 00022, 00023, 00030, 00031, 00032, 00033, 01000, 02000, 03000, 10000, 10001, 10002, 10003, 11000, 12000, 13000, 20000, 20001, 20002, 20003, 21000, 22000, 23000, 30000, 30001, 30002, 30003, 31000, 32000, 33000}.
Square table T(n,k):
k=3: k=4: k=5: k=6: k=7: k=8:
n=2: 1 3 8 20 47 107
n=3: 1 5 21 81 295 1037
n=4: 1 7 40 208 1021 4831
n=5: 1 9 65 425 2621 15569
n=6: 1 11 96 756 5611 40091
n=7: 1 13 133 1225 10627 88717
n=8: 1 15 176 1856 18425 175967
n=9: 1 17 225 2673 29881 321281
-
m[r_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]];
T[n_, k_, r_] := MatrixPower[m[r], k][[1, r + 1]]*n^k;
Reverse[Table[T[n, k - n + 3, 3], {k, 2, 11}, {n, 2, k}], 2] // Flatten
-
my(x2='x^2+'x+1); T(n,k) = n^k - polcoeff(lift(x2*Mod('x, 'x^3-(n-1)*x2)^k), 2); \\ Kevin Ryde, Jan 02 2021
A341050
Cube array read by upward antidiagonals ignoring zero and empty terms: T(n, k, r) is the number of n-ary strings of length k, containing r consecutive 0's.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 3, 1, 5, 8, 1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 43, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 94, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 48, 1, 11, 65, 208, 297, 107, 1, 13, 96, 425, 1024, 1037, 201
Offset: 2
For n = 5, k = 6 and r = 4, there are 65 strings: {000000, 000001, 000002, 000003, 000004, 000010, 000011, 000012, 000013, 000014, 000020, 000021, 000022, 000023, 000024, 000030, 000031, 000032, 000033, 000034, 000040, 000041, 000042, 000043, 000044, 010000, 020000, 030000, 040000, 100000, 100001, 100002, 100003, 100004, 110000, 120000, 130000, 140000, 200000, 200001, 200002, 200003, 200004, 210000, 220000, 230000, 240000, 300000, 300001, 300002, 300003, 300004, 310000, 320000, 330000, 340000, 400000, 400001, 400002, 400003, 400004, 410000, 420000, 430000, 440000}
The first seven slices of the tetrahedron (or pyramid) are:
-----------------Slice 1-----------------
1
-----------------Slice 2-----------------
1
1 3
-----------------Slice 3-----------------
1
1 3
1 5 8
-----------------Slice 4-----------------
1
1 3
1 5 8
1 7 21 19
-----------------Slice 5-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 43
-----------------Slice 6-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 47
1 11 65 208 295 94
-----------------Slice 7-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 48
1 11 65 208 297 107
1 13 96 425 1024 1037 201
Cf.
A005408,
A003215,
A005917,
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528,
A022529,
A022530,
A022531,
A022532,
A022533,
A022534,
A022535,
A022536,
A022537,
A022538,
A022539,
A022540 (k=x, r=1, where x is the x-th Nexus Number).
Cf.
A000567 [(k=4, r=2),(k=5, r=3),(k=6, r=4),...,(k=x, r=x-2)].
Cf.
A103532 [(k=6, r=3),(k=7, r=4),(k=8, r=5),...,(k=x, r=x-3)].
-
m[r_, n_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r, n], k][[1, r + 1]]*n^k; DeleteCases[Transpose[PadLeft[Reverse[Table[T[n, k, r], {k, 2, 8}, {r, 2, k}, {n, 2, r}], 2]], 2 <-> 3], 0, 3] // Flatten
A268644
a(n) = 4*n^3 - 3*n^2 - 2*n - 1.
Original entry on oeis.org
-1, -2, 15, 74, 199, 414, 743, 1210, 1839, 2654, 3679, 4938, 6455, 8254, 10359, 12794, 15583, 18750, 22319, 26314, 30759, 35678, 41095, 47034, 53519, 60574, 68223, 76490, 85399, 94974, 105239, 116218, 127935, 140414, 153679, 167754, 182663, 198430, 215079, 232634, 251119
Offset: 0
-
[4*n^3-3*n^2-2*n-1: n in [0..40]]; // Vincenzo Librandi, Feb 10 2016
-
Table[4 n^3 - 3 n^2 - 2 n - 1, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {-1, -2, 15, 74}, 41]
CoefficientList[Series[(-1 + 2 x + 17 x^2 + 6 x^3) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 10 2016 *)
-
a(n)=4*n^3-3*n^2-2*n-1 \\ Charles R Greathouse IV, Jul 26 2016
A380747
Array read by ascending antidiagonals: A(n,k) = [x^n] (1 - x)/(1 - k*x)^2.
Original entry on oeis.org
1, -1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 5, 1, 0, 1, 20, 21, 7, 1, 0, 1, 48, 81, 40, 9, 1, 0, 1, 112, 297, 208, 65, 11, 1, 0, 1, 256, 1053, 1024, 425, 96, 13, 1, 0, 1, 576, 3645, 4864, 2625, 756, 133, 15, 1, 0, 1, 1280, 12393, 22528, 15625, 5616, 1225, 176, 17, 1
Offset: 0
The array begins as:
1, 1, 1, 1, 1, 1, ...
-1, 1, 3, 5, 7, 9, ...
0, 1, 8, 21, 40, 65, ...
0, 1, 20, 81, 208, 425, ...
0, 1, 48, 297, 1024, 2625, ...
0, 1, 112, 1053, 4864, 15625, ...
0, 1, 256, 3645, 22528, 90625, ...
...
Cf.
A000012 (k=1 or n=0),
A000567 (n=2),
A001792 (k=2),
A007778,
A060747 (n=1),
A081038 (k=3),
A081039 (k=4),
A081040 (k=5),
A081041 (k=6),
A081042 (k=7),
A081043 (k=8),
A081044 (k=9),
A081045 (k=10),
A103532,
A154955,
A380748 (antidiagonal sums).
-
A[0,0]:=1; A[1,0]:=-1; A[n_,k_]:=((k-1)*n+k)k^(n-1); Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=SeriesCoefficient[(1-x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+(k-1)*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
Showing 1-6 of 6 results.
Comments