cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A214661 Odd numbers obtained by transposing the left half of A176271 into rows of a triangle: T(n,k) = A176271(n - 1 + k, k), 1 <= k <= n.

Original entry on oeis.org

1, 3, 9, 7, 15, 25, 13, 23, 35, 49, 21, 33, 47, 63, 81, 31, 45, 61, 79, 99, 121, 43, 59, 77, 97, 119, 143, 169, 57, 75, 95, 117, 141, 167, 195, 225, 73, 93, 115, 139, 165, 193, 223, 255, 289, 91, 113, 137, 163, 191, 221, 253, 287, 323, 361, 111, 135, 161, 189, 219, 251, 285, 321, 359, 399, 441
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 25 2012

Keywords

Examples

			.     Take the first n elements of the n-th diagonal (northwest to
.     southeast) of the triangle on the left side
.     and write this as n-th row on the triangle of the right side.
. 1:                1                    1
. 2:              3   _                  3  9
. 3:            7   9  __                7 15 25
. 4:         13  15  __  __             13 23 35 49
. 5:       21  23  25  __  __           21 33 47 63 ..
. 6:     31  33  35  __  __  __         31 45 61 .. .. ..
. 7:   43  45  47  49  __  __  __       43 59 .. .. .. .. ..
. 8: 57  59  61  63  __  __  __  __     57 .. .. .. .. .. .. .. .
		

Crossrefs

Cf. A051673 (row sums), A214675 (main diagonal).

Programs

  • Haskell
    import Data.List (transpose)
    a214661 n k = a214661_tabl !! (n-1) !! (k-1)
    a214661_row n = a214661_tabl !! (n-1)
    a214661_tabl = zipWith take [1..] $ transpose $ map reverse a176271_tabl
    
  • Magma
    [(n+k)^2-3*n-k+1: k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 10 2024
    
  • Mathematica
    Table[(n+k)^2-3*n-k+1, {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 10 2024 *)
  • SageMath
    flatten([[(n+k)^2-3*n-k+1 for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 10 2024

Formula

T(n, k) = (n+k)^2 - 3*n - k + 1.
T(n,k) = A176271(n+k-1, k).
T(n, k) = A214604(n,k) - 2*A025581(n,k).
T(n, k) = 2*A000290(A094727(n,k)) - A214604(n,k).
T(2*n-1, n) = A214675() (main diagonal).
T(n,1) = A002061(n).
T(n,n) = A016754(n-1).
Sum_{k=1..n} T(n, k) = A051673(n) (row sums).

A220083 a(n) = (15*n^2 + 9*n + 2)/2.

Original entry on oeis.org

1, 13, 40, 82, 139, 211, 298, 400, 517, 649, 796, 958, 1135, 1327, 1534, 1756, 1993, 2245, 2512, 2794, 3091, 3403, 3730, 4072, 4429, 4801, 5188, 5590, 6007, 6439, 6886, 7348, 7825, 8317, 8824, 9346, 9883, 10435, 11002, 11584, 12181, 12793, 13420, 14062
Offset: 0

Views

Author

Bruno Berselli, Dec 10 2012

Keywords

Comments

Sequence related to the heptagonal numbers (A000566) by a(n) = n*A000566(n)-(n-1)*A000566(n-1).
Other similar sequences:
A005408(m) = (m+1)*A001477(m+1)-m*A001477(m), A001477 = nonn. integers;
A000326(m) = m*A000217(n)-(m-1)*A000217(m-1), A000217 = triangular numbers;
A003215(m) = (m+1)*A000290(m+1)-n*A000290(m), A000290 = square numbers;
A081267(m) = (m+1)*A000326(m+1)-n*A000326(m), A000326 = pentagonal numbers;
A080859(m) = (m+1)*A000384(m+1)-n*A000384(m), A000384 = hexagonal numbers;
A214675(m) = m*A000567(m)-(m-1)*A000567(m-1), A000567 = octagonal numbers.

Crossrefs

Programs

Formula

G.f.: (1+10*x+4*x^2)/(1-x)^3.
Sum( a(i), i=0..n ) = A006597(n+1).
a(n) + a(-n) = A010005(n) for n>0.

A100176 Structured octagonal prism numbers.

Original entry on oeis.org

1, 16, 63, 160, 325, 576, 931, 1408, 2025, 2800, 3751, 4896, 6253, 7840, 9675, 11776, 14161, 16848, 19855, 23200, 26901, 30976, 35443, 40320, 45625, 51376, 57591, 64288, 71485, 79200, 87451, 96256, 105633, 115600, 126175, 137376, 149221, 161728, 174915, 188800
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Number of divisors of 120^(n-1). - J. Lowell, Aug 30 2008
Partial sums of A214675. - J. M. Bergot, Jul 08 2013

Crossrefs

Cf. A100177 (structured prisms), A100145 (for more on structured numbers).
Cf. similar sequences, with the formula (k*n - k + 2)*n^2/2, listed in A262000.

Programs

Formula

a(n) = 3*n^3 - 2*n^2.
G.f.: x*(1+12*x+5*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n-1} n*(6*i+1). - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = sqrt(3)*Pi/8 - Pi^2/12 + 9*log(3)/8 = 1.0936465529153418... . - Vaclav Kotesovec, Oct 04 2016
a(n) = n*A000567(n) = n^2 * A016777(n-1). - Bruce J. Nicholson, Aug 10 2017
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(1 + 7*x + 3*x^2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

Extensions

More terms from Zerinvary Lajos, Jun 29 2006

A214659 a(n) = n*(7*n^2 - 3*n - 1)/3.

Original entry on oeis.org

0, 1, 14, 53, 132, 265, 466, 749, 1128, 1617, 2230, 2981, 3884, 4953, 6202, 7645, 9296, 11169, 13278, 15637, 18260, 21161, 24354, 27853, 31672, 35825, 40326, 45189, 50428, 56057, 62090, 68541, 75424, 82753, 90542, 98805, 107556, 116809, 126578, 136877
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 25 2012

Keywords

Comments

a(n) = the sum of the n X n matrices of A204008. For example, for n = 3, the sum of the 9 elements of the 3 X 3 submatrix of A204008 is 1 + 4 + 7 + 4 + 5 + 8 + 7 + 8 + 9 = 53. - J. M. Bergot, Jul 15 2013

Crossrefs

Programs

  • Haskell
    a214659 n = ((7 * n - 3) * n - 1) * n `div` 3
    
  • Magma
    [(7*n^3-3*n^2-n)/3 : n in [0..50]]; // Wesley Ivan Hurt, Apr 11 2015
    
  • Maple
    A214659:=n->(7*n^3-3*n^2-n)/3: seq(A214659(n), n=0..50); # Wesley Ivan Hurt, Apr 11 2015
  • Mathematica
    Table[(7 n^3 -3 n^2 -n)/3, {n,0,50}] (* Wesley Ivan Hurt, Apr 11 2015 *)
    LinearRecurrence[{4,-6,4,-1}, {0,1,14,53}, 51] (* G. C. Greubel, Mar 09 2024 *)
  • SageMath
    [(7*n^3-3*n^2-n)/3 for n in range(51)] # G. C. Greubel, Mar 09 2024

Formula

a(n) = Sum_{k=0..n} A214604(n, k) for n > 0 (row sums).
a(n) = A002378(n) + A051673(n).
From Wesley Ivan Hurt, Apr 11 2015: (Start)
a(n) = (7*n^3 - 3*n^2 - n)/3.
G.f.: x*(1+10*x+3*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
E.g.f.: (x/3)*(3 + 18*x + 7*x^2)*exp(x). - G. C. Greubel, Mar 09 2024

A214660 a(n) = 9*n^2 - 11*n + 3.

Original entry on oeis.org

1, 17, 51, 103, 173, 261, 367, 491, 633, 793, 971, 1167, 1381, 1613, 1863, 2131, 2417, 2721, 3043, 3383, 3741, 4117, 4511, 4923, 5353, 5801, 6267, 6751, 7253, 7773, 8311, 8867, 9441, 10033, 10643, 11271, 11917, 12581, 13263, 13963, 14681, 15417, 16171, 16943
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 25 2012

Keywords

Comments

Central terms of triangle A214604.

Crossrefs

Programs

  • Haskell
    a214660 n = (9 * n - 11) * n + 3
    
  • Magma
    [9*n^2-11*n+3: n in [1..60]]; // G. C. Greubel, Mar 09 2024
    
  • Mathematica
    Table[9n^2-11n+3,{n,60}] (* or *) LinearRecurrence[{3,-3,1},{1,17,51},60] (* Harvey P. Dale, Aug 29 2021 *)
  • PARI
    a(n)=9*n^2-11*n+3 \\ Charles R Greathouse IV, Jun 17 2017
    
  • SageMath
    [9*n^2-11*n+3 for n in range(1,61)] # G. C. Greubel, Mar 09 2024

Formula

G.f.: (1+14*x+3*x^2)/(1-x)^3. - Harvey P. Dale, Aug 29 2021
E.g.f.: -3 + (3 - 2*x + 9*x^2)*exp(x). - G. C. Greubel, Mar 09 2024
Showing 1-5 of 5 results.