cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A051624 12-gonal (or dodecagonal) numbers: a(n) = n*(5*n-4).

Original entry on oeis.org

0, 1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, 924, 1065, 1216, 1377, 1548, 1729, 1920, 2121, 2332, 2553, 2784, 3025, 3276, 3537, 3808, 4089, 4380, 4681, 4992, 5313, 5644, 5985, 6336, 6697, 7068, 7449, 7840, 8241, 8652
Offset: 0

Views

Author

Keywords

Comments

Zero followed by partial sums of A017281. - Klaus Brockhaus, Nov 20 2008
Sequence found by reading the line from 0, in the direction 0, 12, ... and the parallel line from 1, in the direction 1, 33, ..., in the square spiral whose vertices are the generalized 12-gonal numbers A195162. - Omar E. Pol, Jul 18 2012
This is also a star hexagonal number: a(n) = A000384(n) + 6*A000217(n-1). - Luciano Ancora, Mar 30 2015
Starting with offset 1, this is the binomial transform of (1, 11, 10, 0, 0, 0, ...). - Gary W. Adamson, Aug 01 2015
a(n+1) is the sum of the odd numbers from 4n+1 to 6n+1. - Wesley Ivan Hurt, Dec 14 2015
For n >= 2, a(n) is the number of intersection points of all unit circles centered on the inner lattice points of an (n+1) X (n+1) square grid. - Wesley Ivan Hurt, Dec 08 2020
The final digit of a(n) equals the final digit of n, A010879(n). - Enrique Pérez Herrero, Nov 13 2022
a(n-1) is the maximum second Zagreb index of maximal 2-degenerate graphs with n vertices. (The second Zagreb index of a graph is the sum of the products of the degrees over all edges of the graph.) - Allan Bickle, Apr 16 2024

Examples

			The graph K_3 has 3 degree 2 vertices, so a(3-1) = 3*4 = 12.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.

Crossrefs

First differences of A007587.
Cf. A093645 ((10, 1) Pascal, column m=2). Partial sums of A017281.
Cf. A051624, A372025, A372026 (second Zagreb indices of maximal k-degenerate graphs).
Cf. A372027 (second Zagreb index of MOPs).

Programs

  • Magma
    [ n eq 1 select 0 else Self(n-1)+10*(n-2)+1: n in [1..43] ]; // Klaus Brockhaus, Nov 20 2008
    
  • Mathematica
    RecurrenceTable[{a[0]==0, a[1]==1, a[2]==12, a[n]== 3*a[n-1] - 3*a[n-2] + a[n-3]}, a, {n, 30}] (* G. C. Greubel, Jul 31 2015 *)
    Table[n*(5*n - 4), {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
  • PARI
    a(n)=(5*n-4)*n \\ Charles R Greathouse IV, Jun 16 2011

Formula

G.f.: x*(1+9*x)/(1-x)^3.
a(n) = Sum_{k=0..n-1} 10*k+1. - Klaus Brockhaus, Nov 20 2008
a(n) = 10*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = A131242(10n). - Philippe Deléham, Mar 27 2013
a(10*a(n) + 46*n + 1) = a(10*a(n) + 46*n) + a(10*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: x*(5*x + 1) * exp(x). - G. C. Greubel, Jul 31 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=12. - G. C. Greubel, Jul 31 2015
Sum_{n>=1} 1/a(n) = sqrt(1 + 2/sqrt(5))*Pi/8 + 5*log(5)/16 + sqrt(5)*log((1 + sqrt(5))/2)/8 = 1.177956057922663858735173968... . - Vaclav Kotesovec, Apr 27 2016
a(n) + 4*(n-1)^2 = (3*n-2)^2. Let P(k,n) be the n-th k-gonal number. Then, in general, P(4k,n) + (k-1)^2*(n-1)^2 = (k*n-k+1)^2. - Charlie Marion, Feb 04 2020
Product_{n>=2} (1 - 1/a(n)) = 5/6. - Amiram Eldar, Jan 21 2021
a(n) = (3*n-2)^2 - (2*n-2)^2. In general, if we let P(k,n) = the n-th k-gonal number, then P(4k,n) = (k*n-(k-1))^2 - ((k-1)*n-(k-1))^2. - Charlie Marion, Nov 11 2021

A033429 a(n) = 5*n^2.

Original entry on oeis.org

0, 5, 20, 45, 80, 125, 180, 245, 320, 405, 500, 605, 720, 845, 980, 1125, 1280, 1445, 1620, 1805, 2000, 2205, 2420, 2645, 2880, 3125, 3380, 3645, 3920, 4205, 4500, 4805, 5120, 5445, 5780, 6125, 6480, 6845, 7220, 7605, 8000, 8405, 8820, 9245, 9680, 10125, 10580, 11045, 11520, 12005, 12500
Offset: 0

Views

Author

Keywords

Comments

Number of edges of the complete bipartite graph of order 6n, K_n,5n. - Roberto E. Martinez II, Jan 07 2002
Number of edges of the complete tripartite graph of order 4n, K_n,n,2n. - Roberto E. Martinez II, Jan 07 2002
a(n+1)-a(n) : 5, 15, 25, 35, 45, ... (see A017329). - Philippe Deléham, Dec 08 2011
From Larry J Zimmermann, Feb 21 2013: (Start)
The sum of the areas of 2 squares that equals the area of a rectangle with whole number sides using the formula x^2 + y^2 = (x+y+sqrt(2*x*y))(x+y-sqrt(2*x*y)), where the substitution y=2*x obtains the whole number sides of the rectangle. So x^2+(2*x)^2=5x(x).
x squares sum rectangle (l,w) area
1 1,4 5 5,1 5
2 4,16 20 10,2 20 (End)

Crossrefs

Central column of A055096.
Cf. A000290.
Cf. A185019.
Similar sequences are listed in A316466.

Programs

  • Mathematica
    5*Range[50]^2 (* Alonso del Arte, May 23 2012 *)
  • PARI
    a(n)=5*n^2

Formula

a(n) = 5*A000290(n). - Omar E. Pol, Dec 11 2008
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: 5*x*(1+x)/(1-x)^3.
a(n) = 4*A000217(n) + A000567(n). (End)
a(n) = a(n-1)+5*(2*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
a(n) = A131242(10*n+4). - Philippe Deléham, Mar 27 2013
a(n) = a(n-1) + 10*n - 5, with a(0)=0. - Jean-Bernard François, Oct 04 2013
a(n) = A001105(n) + A033428(n). - Altug Alkan, Sep 28 2015
E.g.f.: 5*x*(x+1)*exp(x). - G. C. Greubel, Jul 17 2017
a(n) = Sum_{i = 2..6} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/30.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/60.
Product_{n>=1} (1 + 1/a(n)) = sqrt(5)*sinh(Pi/sqrt(5))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(5)*sin(Pi/sqrt(5))/Pi. (End)

Extensions

Better description from N. J. A. Sloane, May 15 1998

A147875 Second heptagonal numbers: a(n) = n*(5*n+3)/2.

Original entry on oeis.org

0, 4, 13, 27, 46, 70, 99, 133, 172, 216, 265, 319, 378, 442, 511, 585, 664, 748, 837, 931, 1030, 1134, 1243, 1357, 1476, 1600, 1729, 1863, 2002, 2146, 2295, 2449, 2608, 2772, 2941, 3115, 3294, 3478, 3667, 3861, 4060, 4264, 4473, 4687, 4906, 5130, 5359, 5593
Offset: 0

Views

Author

Keywords

Comments

Zero followed by partial sums of A016897.
Apparently = every 2nd term of A111710 and A085787.
Bisection of A085787. Sequence found by reading the line from 0, in the direction 0, 13, ... and the line from 4, in the direction 4, 27, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012
Numbers of the form m^2 + k*m*(m+1)/2: in this case is k=3. See also A254963. - Bruno Berselli, Feb 11 2015

Examples

			G.f. = 4*x + 13*x^2 + 27*x^3 + 46*x^4 + 70*x^5 + 99*x^6 + 133*x^7 + ... - _Michael Somos_, Jan 25 2019
		

Crossrefs

Cf. A016897, A111710, A000217, A085787, A224419 (positions of squares).
Second n-gonal numbers: A005449, A014105, A045944, A179986, A033954, A062728, A135705.
Cf. A000566.

Programs

  • GAP
    List([0..50], n-> n*(5*n+3)/2); # G. C. Greubel, Jul 04 2019
  • Magma
    [n*(5*n+3)/2: n in [0..50]]; // G. C. Greubel, Jul 04 2019
    
  • Mathematica
    Table[(n(5n+3))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 4, 13}, 50] (* Harvey P. Dale, May 15 2013 *)
  • PARI
    a(n)=n*(5*n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(5*n+3)/2 for n in (0..50)] # G. C. Greubel, Jul 04 2019
    

Formula

G.f.: x*(4+x)/(1-x)^3.
a(n) = Sum_{k=0..n-1} A016897(k).
a(n) - a(n-1) = 5*n -1. - Vincenzo Librandi, Nov 26 2010
G.f.: U(0) where U(k) = 1 + 2*(2*k+3)/(k + 2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3) + (2*k+2)*(2*k+3)/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 14 2012
E.g.f.: U(0) where U(k) = 1 + 2*(2*k+3)/(k + 2 - 2*x*(k+2)^2*(k+3)/(2*x*(k+2)*(k+3) + (2*k+2)^2*(2*k+3)/U(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 14 2012
a(n) = A130520(5n+3). - Philippe Deléham, Mar 26 2013
a(n) = A131242(10n+7)/2. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=4, a(2)=13. - Harvey P. Dale, May 15 2013
Sum_{n>=1} 1/a(n) = 10/9 + sqrt(1 - 2/sqrt(5))*Pi/3 - 5*log(5)/6 + sqrt(5)*log((1 + sqrt(5))/2)/3 = 0.4688420784500060750083432... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n) + A000217(2*n). - Bruno Berselli, Jul 01 2016
From Ilya Gutkovskiy, Jul 01 2016: (Start)
E.g.f.: x*(8 + 5*x)*exp(x)/2.
Dirichlet g.f.: (5*zeta(s-2) + 3*zeta(s-1))/2. (End)
a(n) = A000566(-n) for all n in Z. - Michael Somos, Jan 25 2019
From Leo Tavares, Feb 14 2022: (Start)
a(n) = A003215(n) - A000217(n+1). See Sliced Hexagons illustration in links.
a(n) = A000096(n) + 2*A000290(n). (End)

Extensions

Edited by Klaus Brockhaus and R. J. Mathar, Nov 20 2008
New name from Bruno Berselli, Jan 13 2011

A059995 Drop the final digit of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10
Offset: 0

Views

Author

Henry Bottomley, Mar 12 2001

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-10) + 1.
a(n) = floor(n/10).
a(n) = (n - A010879(n))/10.
G.f.: x^10/((1-x)(1-x^10)).
Partial sums are given by A131242. - Hieronymus Fischer, Jun 21 2007

A174738 Partial sums of floor(n/7).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236
Offset: 0

Views

Author

Mircea Merca, Nov 30 2010

Keywords

Comments

Apart from the initial zeros, the same as A011867.

Examples

			a(9) = floor(0/7) + floor(1/7) + floor(2/7) + floor(3/7) + floor(4/7) + floor(5/7) + floor(6/7) + floor(7/7) + floor(8/7) + floor(9/7) = 3.
		

Crossrefs

Programs

Formula

a(n) = round(n*(n-5)/14).
a(n) = floor((n-2)*(n-3)/14).
a(n) = ceiling((n+1)*(n-6)/14).
a(n) = a(n-7) + n - 6, n > 6.
a(n) = +2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9). - R. J. Mathar, Nov 30 2010
G.f.: x^7/( (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1-x)^3 ). - R. J. Mathar, Nov 30 2010
a(7n) = A001106(n), a(7n+1) = A218471(n), a(7n+2) = A022264(n), a(7n+3) = A022265(n), a(7n+4) = A186029(n), a(7n+5) = A179986(n), a(7n+6) = A024966(n). - Philippe Deléham, Mar 26 2013

A124080 10 times triangular numbers: a(n) = 5*n*(n + 1).

Original entry on oeis.org

0, 10, 30, 60, 100, 150, 210, 280, 360, 450, 550, 660, 780, 910, 1050, 1200, 1360, 1530, 1710, 1900, 2100, 2310, 2530, 2760, 3000, 3250, 3510, 3780, 4060, 4350, 4650, 4960, 5280, 5610, 5950, 6300, 6660, 7030, 7410, 7800, 8200, 8610, 9030, 9460, 9900, 10350
Offset: 0

Views

Author

Zerinvary Lajos, Nov 24 2006

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n >= 5, a(n-4) is equal to the number of 5-subsets of X having exactly three elements in common with Y. Y is a 5-subset of an n-set X then, for n >= 6, a(n-6) is the number of (n-5)-subsets of X having exactly two elements in common with Y. - Milan Janjic, Dec 28 2007
Also sequence found by reading the line from 0, in the direction 0, 10, ... and the same line from 0, in the direction 0, 30, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Axis perpendicular to A195148 in the same spiral. - Omar E. Pol, Sep 18 2011

Crossrefs

Programs

  • Magma
    [ 5*n*(n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Maple
    [seq(10*binomial(n,2),n=1..51)];
    seq(n*(n+1)*5, n=0..39); # Zerinvary Lajos, Mar 06 2007
  • Mathematica
    10*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,10,30},50] (* Harvey P. Dale, Jul 21 2011 *)
  • PARI
    a(n)=5*n*(n+1) \\ Charles R Greathouse IV, Sep 28 2015

Formula

a(n) = 10*C(n,2), n >= 1.
a(n) = A049598(n) - A002378(n). - Zerinvary Lajos, Mar 06 2007
a(n) = 5*n*(n + 1), n >= 0. - Zerinvary Lajos, Mar 06 2007
a(n) = 5*n^2 + 5*n = 10*A000217(n) = 5*A002378(n) = 2*A028895(n). - Omar E. Pol, Dec 12 2008
a(n) = 10*n + a(n-1) (with a(0) = 0). - Vincenzo Librandi, Nov 12 2009
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 10, a(2) = 30. - Harvey P. Dale, Jul 21 2011
a(n) = A062786(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A131242(10*n+9). - Philippe Deléham, Mar 27 2013
From G. C. Greubel, Aug 22 2017: (Start)
G.f.: 10*x/(1 - x)^3.
E.g.f.: 5*x*(x + 2)*exp(x). (End)
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2)-1)/5. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(5/Pi)*cos(3*Pi/(2*sqrt(5))).
Product_{n>=1} (1 + 1/a(n)) = (5/Pi)*cos(Pi/(2*sqrt(5))). (End)

A118729 Rectangular array where row r contains the 8 numbers 4*r^2 - 3*r, 4*r^2 - 2*r, ..., 4*r^2 + 4*r.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), May 21 2006

Keywords

Comments

The numbers in row r span the interval ]8*A000217(r-1), 8*A000217(r)].
The first difference between the entries in row r is r.
Partial sums of floor(n/8). - Philippe Deléham, Mar 26 2013
Apart from the initial zeros, the same as A008726. - Philippe Deléham, Mar 28 2013
a(n+7) is the number of key presses required to type a word of n letters, all different, on a keypad with 8 keys where 1 press of a key is some letter, 2 presses is some other letter, etc., and under an optimal mapping of letters to keys and presses (answering LeetCode problem 3014). - Christopher J. Thomas, Feb 16 2024

Examples

			The array starts, with row r=0, as
  r=0:   0  0  0  0  0  0  0  0;
  r=1:   1  2  3  4  5  6  7  8;
  r=2:  10 12 14 16 18 20 22 24;
  r=3:  27 30 33 36 39 42 45 48;
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[4r^2+r(Range[-3,4]),{r,0,6}]] (* or *) LinearRecurrence[ {2,-1,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,1,2},60] (* Harvey P. Dale, Nov 26 2015 *)

Formula

From Philippe Deléham, Mar 26 2013: (Start)
a(8k) = A001107(k).
a(8k+1) = A002939(k).
a(8k+2) = A033991(k).
a(8k+3) = A016742(k).
a(8k+4) = A007742(k).
a(8k+5) = A002943(k).
a(8k+6) = A033954(k).
a(8k+7) = A033996(k). (End)
G.f.: x^8/((1-x)^2*(1-x^8)). - Philippe Deléham, Mar 28 2013
a(n) = floor(n/8)*(n-3-4*floor(n/8)). - Ridouane Oudra, Jun 04 2019
a(n+7) = (1/2)*(n+(n mod 8))*(floor(n/8)+1). - Christopher J. Thomas, Feb 13 2024

Extensions

Redefined as a rectangular tabf array and description simplified by R. J. Mathar, Oct 20 2010

A135705 a(n) = 10*binomial(n,2) + 9*n.

Original entry on oeis.org

0, 9, 28, 57, 96, 145, 204, 273, 352, 441, 540, 649, 768, 897, 1036, 1185, 1344, 1513, 1692, 1881, 2080, 2289, 2508, 2737, 2976, 3225, 3484, 3753, 4032, 4321, 4620, 4929, 5248, 5577, 5916, 6265, 6624, 6993, 7372, 7761, 8160, 8569, 8988, 9417, 9856, 10305, 10764
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2008

Keywords

Comments

Also, second 12-gonal (or dodecagonal) numbers. Identity for the numbers b(n)=n*(h*n+h-2)/2 (see Crossrefs): Sum_{i=0..n} (b(n)+i)^2 = (Sum_{i=n+1..2*n} (b(n)+i)^2) + h*(h-4)*A000217(n)^2 for n>0. - Bruno Berselli, Jan 15 2011
Sequence found by reading the line from 0, in the direction 0, 28, ..., and the line from 9, in the direction 9, 57, ..., in the square spiral whose vertices are the generalized 12-gonal numbers A195162. - Omar E. Pol, Jul 24 2012
Bisection of A195162. - Omar E. Pol, Aug 04 2012

Crossrefs

Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, A033954, A062728, this sequence.
Cf. A195162.

Programs

  • GAP
    List([0..50], n-> n*(5*n+4)); # G. C. Greubel, Jul 04 2019
  • Magma
    [n*(5*n+4): n in [0..50]]; // G. C. Greubel, Jul 04 2019
    
  • Mathematica
    LinearRecurrence[{3,-3,1}, {0,9,28}, 50] (* or *) Table[5*n^2 + 4*n, {n,0,50}] (* G. C. Greubel, Oct 29 2016 *)
    Table[10 Binomial[n,2]+9n,{n,0,60}] (* Harvey P. Dale, Jun 14 2023 *)
  • PARI
    a(n) = 10*binomial(n,2) + 9*n \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [n*(5*n+4) for n in (0..50)] # G. C. Greubel, Jul 04 2019
    

Formula

From R. J. Mathar, Mar 06 2008: (Start)
O.g.f.: x*(9+x)/(1-x)^3.
a(n) = n*(5*n+4). (End)
a(n) = a(n-1) + 10*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 24 2009
a(n) = Sum_{i=0..n-1} A017377(i) for n>0. - Bruno Berselli, Jan 15 2011
a(n) = A131242(10n+8). - Philippe Deléham, Mar 27 2013
Sum_{n>=1} 1/a(n) = 5/16 + sqrt(1 + 2/sqrt(5))*Pi/8 - 5*log(5)/16 - sqrt(5)*log((1 + sqrt(5))/2)/8 = 0.2155517745488486003038... . - Vaclav Kotesovec, Apr 27 2016
From G. C. Greubel, Oct 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(9 + 5*x)*exp(x). (End)
a(n) = A003154(n+1) - A000290(n+1). - Leo Tavares, Mar 29 2022

A135706 a(n) = n*(5*n-3).

Original entry on oeis.org

0, 2, 14, 36, 68, 110, 162, 224, 296, 378, 470, 572, 684, 806, 938, 1080, 1232, 1394, 1566, 1748, 1940, 2142, 2354, 2576, 2808, 3050, 3302, 3564, 3836, 4118, 4410, 4712, 5024, 5346, 5678, 6020, 6372, 6734, 7106, 7488, 7880, 8282, 8694, 9116, 9548, 9990, 10442
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2008, Mar 05 2008

Keywords

Comments

Twice heptagonal numbers. - Omar E. Pol, May 14 2008

Crossrefs

Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=10). - Bruno Berselli, Jun 10 2013

Programs

Formula

Binomial transform of [2, 12, 10, 0, 0, 0, ...]. - Gary W. Adamson, Mar 05 2008
a(n) = 2*A000566(n). - Omar E. Pol, May 14 2008
a(n) = a(n-1) + 10*n - 8 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
a(n) = A131242(10n+1). - Philippe Deléham, Mar 27 2013
From G. C. Greubel, Oct 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(1 + 4*x)/(1 - x)^3.
E.g.f.: x*(2 + 5*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = tan(Pi/10)*Pi/6 - sqrt(5)*log(phi)/6 + 5*log(5)/12, where phi is the golden ratio (A001622). - Amiram Eldar, Jul 19 2022

A147874 a(n) = (5*n-7)*(n-1).

Original entry on oeis.org

0, 3, 16, 39, 72, 115, 168, 231, 304, 387, 480, 583, 696, 819, 952, 1095, 1248, 1411, 1584, 1767, 1960, 2163, 2376, 2599, 2832, 3075, 3328, 3591, 3864, 4147, 4440, 4743, 5056, 5379, 5712, 6055, 6408, 6771, 7144, 7527, 7920, 8323, 8736, 9159, 9592, 10035
Offset: 1

Views

Author

Keywords

Comments

Zero followed by partial sums of A017305.
Appears to be related to various other sequences: a(n) = A036666(2*n-2) for n>1; a(n) = A115006(2*n-3) for n>1; a(n) = A118015(5*n-6) for n>1; a(n) = A008738(5*n-7) for n>1.
Even dodecagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011

Crossrefs

Cf. A017305 (10n+3), A036666, A115006, A118015 (floor(n^2/5)), A008738 (floor((n^2+1)/5)), A294830.
Cf. A051624, A193872. - Omar E. Pol, Aug 19 2011

Programs

  • GAP
    List([1..50], n-> (5*n-7)*(n-1)); # G. C. Greubel, Jul 30 2019
  • Magma
    [ 0 ] cat [ &+[ 10*k+3: k in [0..n-1] ]: n in [1..50] ]; // Klaus Brockhaus, Nov 17 2008
    
  • Magma
    [ 5*n^2-2*n: n in [0..50] ];
    
  • Mathematica
    s=0;lst={s};Do[s+=n++ +3;AppendTo[lst,s],{n,0,6!,10}];lst
    Table[5n^2-12n+7,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{0,3,16},50] (* or *) PolygonalNumber[12,Range[0,100,2]]/4 (* Harvey P. Dale, Aug 08 2021 *)
  • PARI
    {m=50; a=7; for(n=0, m, print1(a=a+10*(n-1)+3, ","))} \\ Klaus Brockhaus, Nov 17 2008
    
  • Sage
    [(5*n-7)*(n-1) for n in (1..50)] # G. C. Greubel, Jul 30 2019
    

Formula

a(n) = Sum_{k=0..n-2} 10*k+3 = Sum_{k=0..n-2} A017305(k).
G.f.: x*(3 + 7*x)/(1-x)^3.
a(n) = 10*(n-2) + 3 + a(n-1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A193872(n-1)/4. - Omar E. Pol, Aug 19 2011
a(n+1) = A131242(10n+2). - Philippe Deléham, Mar 27 2013
E.g.f.: -7 + (7 - 7*x + 5*x^2)*exp(x). - G. C. Greubel, Jul 30 2019
Sum_{n>=2} 1/a(n) = A294830. - Amiram Eldar, Nov 15 2020
a(n) = A014105(n-1) + 3*A002378(n-2). - Leo Tavares, Mar 31 2025

Extensions

Edited by R. J. Mathar and Klaus Brockhaus, Nov 17 2008, Nov 20 2008
Showing 1-10 of 17 results. Next