A294828 Numerators of the partial sums of the reciprocals of the numbers (k + 1)*(5*k + 3) = A147874(k+2), for k >= 0.
1, 19, 263, 815, 95597, 678149, 7531399, 18016577, 259695727, 4173941423, 222039686299, 2153029760377, 19428099753313, 331021112488901, 24211723390477517, 12126560607807901, 1008024074147249303, 168229609596886043, 1740462375346732831, 1219642439745618215
Offset: 0
Examples
The rationals V(5,3;n), n >= 0, begin: 1/3, 19/48, 263/624, 815/1872, 95597/215280, 678149/1506960, 7531399/16576560, 18016577/39369330, 259695727/564293730, 4173941423/9028699680, 222039686299/478521083040, 2153029760377/4625703802720, 19428099753313/41631334224480, ... V(5,3;10^6) = 0.4817015746 to be compared with 0.4817017745 from A294830 with 10 digits.
References
- Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
Links
- Robert Israel, Table of n, a(n) for n = 0..891
- Eric Weisstein's World of Mathematics, Digamma Function
Programs
-
Maple
map(numer,ListTools:-PartialSums([seq(1/(k+1)/(5*k+3),k=0..50)])); # Robert Israel, Nov 17 2017
-
PARI
a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 3)))); \\ Michel Marcus, Nov 17 2017
Comments