A337484
Number of ordered triples of positive integers summing to n that are neither strictly increasing nor strictly decreasing.
Original entry on oeis.org
0, 0, 0, 1, 3, 6, 8, 13, 17, 22, 28, 35, 41, 50, 58, 67, 77, 88, 98, 111, 123, 136, 150, 165, 179, 196, 212, 229, 247, 266, 284, 305, 325, 346, 368, 391, 413, 438, 462, 487, 513, 540, 566, 595, 623, 652, 682, 713, 743, 776, 808, 841, 875, 910, 944, 981, 1017
Offset: 0
The a(3) = 1 through a(7) = 13 triples:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5)
(1,2,1) (1,2,2) (1,3,2) (1,3,3)
(2,1,1) (1,3,1) (1,4,1) (1,4,2)
(2,1,2) (2,1,3) (1,5,1)
(2,2,1) (2,2,2) (2,1,4)
(3,1,1) (2,3,1) (2,2,3)
(3,1,2) (2,3,2)
(4,1,1) (2,4,1)
(3,1,3)
(3,2,2)
(3,3,1)
(4,1,2)
(5,1,1)
A242771 allows strictly increasing but not strictly decreasing triples.
A337481 counts these compositions of any length.
A001399(n - 6) counts unordered strict triples.
A218004 counts strictly increasing or weakly decreasing compositions.
A332745 counts partitions with weakly increasing or weakly decreasing run-lengths.
A332835 counts compositions with weakly increasing or weakly decreasing run-lengths.
A337483 counts triples either weakly increasing or weakly decreasing.
Cf.
A000212,
A000217,
A001840,
A014311,
A046691,
A128422,
A156040,
A332834,
A337461,
A337482,
A337561,
A337603,
A337604.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],!Less@@#&&!Greater@@#&]],{n,0,15}]
A002789
Number of integer points in a certain quadrilateral scaled by a factor of n.
Original entry on oeis.org
2, 4, 7, 11, 16, 21, 28, 35, 43, 52, 62, 72, 84, 96, 109, 123, 138, 153, 170, 187, 205, 224, 244, 264, 286, 308, 331, 355, 380, 405, 432, 459, 487, 516, 546, 576, 608, 640, 673, 707, 742, 777, 814, 851, 889, 928, 968, 1008, 1050, 1092, 1135, 1179, 1224, 1269
Offset: 1
G.f. = 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 21*x^6 + 28*x^7 + 35*x^8 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- E. Ehrhart, Sur un problème de géométrie diophantienne linéaire I, (Polyèdres et réseaux), J. Reine Angew. Math. 226 1967 1-29. MR0213320 (35 #4184).
- E. Ehrhart, Sur un problème de géométrie diophantienne linéaire I, (Polyèdres et réseaux), J. Reine Angew. Math. 226 1967 1-29. MR0213320 (35 #4184). [Annotated scanned copy of pages 16 and 22 only]
- E. Ehrhart, Sur un problème de géométrie diophantienne linéaire II. Systemes diophantiens lineaires, J. Reine Angew. Math. 227 1967 25-49. [Annotated scanned copy of pages 47-49 only]
- Wikipedia, Ehrhart polynomial
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
-
a[ n_] := Quotient[ 7 + 12 n + 5 n^2, 12]; (* Michael Somos, May 22 2014 *)
a[ n_] := Length @ With[{o = Boole[ 0 < n], c = Boole[ 0 >= n], m = Abs@n}, FindInstance[ 0 < o + x && 0 < o + y && (2 x < o + m && 4 x + 3 y < c + 3 m || m < c + 2 x && 2 x + 3 y < o + 2 m), {x, y}, Integers, 10^9]]; (* Michael Somos, May 22 2014 *)
-
{a(n) = (7 + 12*n + 5*n^2) \ 12}; /* Michael Somos, May 22 2014 */
-
{a(n) = if( n<0, polcoeff( x^3 * (1 + x + x^2 + 2*x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^-n), -n), polcoeff( x * (2 + x^2 + x^3 + x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^n), n))}; /* Michael Somos, May 22 2014 */
A321773
Number of compositions of n into parts with distinct multiplicities and with exactly three parts.
Original entry on oeis.org
1, 3, 6, 4, 9, 9, 10, 12, 15, 13, 18, 18, 19, 21, 24, 22, 27, 27, 28, 30, 33, 31, 36, 36, 37, 39, 42, 40, 45, 45, 46, 48, 51, 49, 54, 54, 55, 57, 60, 58, 63, 63, 64, 66, 69, 67, 72, 72, 73, 75, 78, 76, 81, 81, 82, 84, 87, 85, 90, 90, 91, 93, 96, 94, 99, 99
Offset: 3
From _Gus Wiseman_, Nov 11 2020: (Start)
Also the number of 3-part non-strict compositions of n. For example, the a(3) = 1 through a(11) = 15 triples are:
111 112 113 114 115 116 117 118 119
121 122 141 133 161 144 181 155
211 131 222 151 224 171 226 191
212 411 223 233 225 244 227
221 232 242 252 262 272
311 313 323 333 334 335
322 332 414 343 344
331 422 441 424 353
511 611 522 433 434
711 442 443
622 515
811 533
551
722
911
(End)
A235451 counts 3-part compositions with distinct run-lengths
A001399(n-6) counts 3-part compositions in the complement.
A261982 counts non-strict compositions of any length.
A032020 counts strict compositions.
A242771 counts triples that are not strictly increasing.
-
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n,{3}],!UnsameQ@@#&]],{n,0,100}] (* Gus Wiseman, Nov 11 2020 *)
A337698
Number of compositions of n that are not strictly increasing.
Original entry on oeis.org
0, 0, 1, 2, 6, 13, 28, 59, 122, 248, 502, 1012, 2033, 4078, 8170, 16357, 32736, 65498, 131026, 262090, 524224, 1048500, 2097063, 4194200, 8388486, 16777074, 33554267, 67108672, 134217506, 268435200, 536870616, 1073741484, 2147483258, 4294966848, 8589934080
Offset: 0
The a(2) = 1 through a(5) = 13 compositions:
(11) (21) (22) (32)
(111) (31) (41)
(112) (113)
(121) (122)
(211) (131)
(1111) (212)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
A140106 counts the unordered case of length 3.
A242771 counts the case of length 3.
A333255 is the complement of a ranking sequence (using standard compositions
A066099) for these compositions.
A337481 counts these compositions that are not strictly decreasing.
A337482 counts these compositions that are not weakly decreasing.
A218004 counts strictly increasing or weakly decreasing compositions.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Less@@#&]],{n,0,15}]
Showing 1-4 of 4 results.
Comments