cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A337484 Number of ordered triples of positive integers summing to n that are neither strictly increasing nor strictly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 8, 13, 17, 22, 28, 35, 41, 50, 58, 67, 77, 88, 98, 111, 123, 136, 150, 165, 179, 196, 212, 229, 247, 266, 284, 305, 325, 346, 368, 391, 413, 438, 462, 487, 513, 540, 566, 595, 623, 652, 682, 713, 743, 776, 808, 841, 875, 910, 944, 981, 1017
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2020

Keywords

Examples

			The a(3) = 1 through a(7) = 13 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)
           (1,2,1)  (1,2,2)  (1,3,2)  (1,3,3)
           (2,1,1)  (1,3,1)  (1,4,1)  (1,4,2)
                    (2,1,2)  (2,1,3)  (1,5,1)
                    (2,2,1)  (2,2,2)  (2,1,4)
                    (3,1,1)  (2,3,1)  (2,2,3)
                             (3,1,2)  (2,3,2)
                             (4,1,1)  (2,4,1)
                                      (3,1,3)
                                      (3,2,2)
                                      (3,3,1)
                                      (4,1,2)
                                      (5,1,1)
		

Crossrefs

A140106 is the unordered case.
A242771 allows strictly increasing but not strictly decreasing triples.
A337481 counts these compositions of any length.
A001399(n - 6) counts unordered strict triples.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A069905 counts unordered triples.
A218004 counts strictly increasing or weakly decreasing compositions.
A332745 counts partitions with weakly increasing or weakly decreasing run-lengths.
A332835 counts compositions with weakly increasing or weakly decreasing run-lengths.
A337483 counts triples either weakly increasing or weakly decreasing.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],!Less@@#&&!Greater@@#&]],{n,0,15}]

Formula

a(n) = 2*A242771(n - 1) - A000217(n - 1), n > 0.
2*A001399(n - 6) = 2*A069905(n - 3) = 2*A211540(n - 1) is the complement.
4*A001399(n - 6) = 4*A069905(n - 3) = 4*A211540(n - 1) is the strict case.
Conjectures from Colin Barker, Sep 13 2020: (Start)
G.f.: x^3*(1 + 2*x + 2*x^2 - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6.
(End)

A002789 Number of integer points in a certain quadrilateral scaled by a factor of n.

Original entry on oeis.org

2, 4, 7, 11, 16, 21, 28, 35, 43, 52, 62, 72, 84, 96, 109, 123, 138, 153, 170, 187, 205, 224, 244, 264, 286, 308, 331, 355, 380, 405, 432, 459, 487, 516, 546, 576, 608, 640, 673, 707, 742, 777, 814, 851, 889, 928, 968, 1008, 1050, 1092, 1135, 1179, 1224, 1269
Offset: 1

Views

Author

Keywords

Comments

The quadrilateral is given by four vertices [(1/2, 1/3), (0, 1), (0, 0), (1, 0)] as an example on page 22 of Ehrhart 1967. Here the closed line segment from (1/2, 1/3) to (0, 1) is not included but the rest of the boundary is. The sequence is denoted by d(n). - Michael Somos, May 22 2014

Examples

			G.f. = 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 21*x^6 + 28*x^7 + 35*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[ n_] := Quotient[ 7 + 12 n + 5 n^2, 12]; (* Michael Somos, May 22 2014 *)
    a[ n_] := Length @ With[{o = Boole[ 0 < n], c = Boole[ 0 >= n], m = Abs@n}, FindInstance[ 0 < o + x && 0 < o + y && (2 x < o + m && 4 x + 3 y < c + 3 m || m < c + 2 x && 2 x + 3 y < o + 2 m), {x, y}, Integers, 10^9]]; (* Michael Somos, May 22 2014 *)
  • PARI
    {a(n) = (7 + 12*n + 5*n^2) \ 12}; /* Michael Somos, May 22 2014 */
    
  • PARI
    {a(n) = if( n<0, polcoeff( x^3 * (1 + x + x^2 + 2*x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^-n), -n), polcoeff( x * (2 + x^2 + x^3 + x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^n), n))}; /* Michael Somos, May 22 2014 */

Formula

G.f.: x * (2 + 2*x + x^2) / (1 - x - x^2 + x^4 + x^5 - x^6) = (2*x + x^3 + x^4 + x^5) / ((1 - x)^2 * (1 - x^6)). - Michael Somos, May 22 2014
a(n) = floor( A168668(n+1) / 12), a(n) = A242771(-n), a(n) - a(n-1) = A242774(n) for all n in Z. - Michael Somos, May 22 2014

A321773 Number of compositions of n into parts with distinct multiplicities and with exactly three parts.

Original entry on oeis.org

1, 3, 6, 4, 9, 9, 10, 12, 15, 13, 18, 18, 19, 21, 24, 22, 27, 27, 28, 30, 33, 31, 36, 36, 37, 39, 42, 40, 45, 45, 46, 48, 51, 49, 54, 54, 55, 57, 60, 58, 63, 63, 64, 66, 69, 67, 72, 72, 73, 75, 78, 76, 81, 81, 82, 84, 87, 85, 90, 90, 91, 93, 96, 94, 99, 99
Offset: 3

Views

Author

Alois P. Heinz, Nov 18 2018

Keywords

Examples

			From _Gus Wiseman_, Nov 11 2020: (Start)
Also the number of 3-part non-strict compositions of n. For example, the a(3) = 1 through a(11) = 15 triples are:
  111   112   113   114   115   116   117   118   119
        121   122   141   133   161   144   181   155
        211   131   222   151   224   171   226   191
              212   411   223   233   225   244   227
              221         232   242   252   262   272
              311         313   323   333   334   335
                          322   332   414   343   344
                          331   422   441   424   353
                          511   611   522   433   434
                                      711   442   443
                                            622   515
                                            811   533
                                                  551
                                                  722
                                                  911
(End)
		

Crossrefs

Column k=3 of A242887.
A235451 counts 3-part compositions with distinct run-lengths
A001399(n-6) counts 3-part compositions in the complement.
A014311 intersected with A335488 ranks these compositions.
A140106 is the unordered case, with Heinz numbers A285508.
A261982 counts non-strict compositions of any length.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A032020 counts strict compositions.
A047967 counts non-strict partitions, with Heinz numbers A013929.
A242771 counts triples that are not strictly increasing.

Programs

  • Mathematica
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n,{3}],!UnsameQ@@#&]],{n,0,100}] (* Gus Wiseman, Nov 11 2020 *)

Formula

Conjectures from Colin Barker, Dec 11 2018: (Start)
G.f.: x^3*(1 + 3*x + 5*x^2) / ((1 - x)^2*(1 + x)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) - a(n-5) for n>7. (End)
Conjecture: a(n) = (3*n-k)/2 where k value has a cycle of 6 starting from n=3 of (7,6,3,10,3,6). - Bill McEachen, Aug 12 2025

A337698 Number of compositions of n that are not strictly increasing.

Original entry on oeis.org

0, 0, 1, 2, 6, 13, 28, 59, 122, 248, 502, 1012, 2033, 4078, 8170, 16357, 32736, 65498, 131026, 262090, 524224, 1048500, 2097063, 4194200, 8388486, 16777074, 33554267, 67108672, 134217506, 268435200, 536870616, 1073741484, 2147483258, 4294966848, 8589934080
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2020

Keywords

Examples

			The a(2) = 1 through a(5) = 13 compositions:
  (11)  (21)   (22)    (32)
        (111)  (31)    (41)
               (112)   (113)
               (121)   (122)
               (211)   (131)
               (1111)  (212)
                       (221)
                       (311)
                       (1112)
                       (1121)
                       (1211)
                       (2111)
                       (11111)
		

Crossrefs

A000009 counts the complement.
A047967 is the unordered version.
A056823 is the weak version.
A140106 counts the unordered case of length 3.
A242771 counts the case of length 3.
A333255 is the complement of a ranking sequence (using standard compositions A066099) for these compositions.
A337481 counts these compositions that are not strictly decreasing.
A337482 counts these compositions that are not weakly decreasing.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A218004 counts strictly increasing or weakly decreasing compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Less@@#&]],{n,0,15}]

Formula

a(n) = 2^(n-1) - A000009(n) for n > 0.
Showing 1-4 of 4 results.