A014105
Second hexagonal numbers: a(n) = n*(2*n + 1).
Original entry on oeis.org
0, 3, 10, 21, 36, 55, 78, 105, 136, 171, 210, 253, 300, 351, 406, 465, 528, 595, 666, 741, 820, 903, 990, 1081, 1176, 1275, 1378, 1485, 1596, 1711, 1830, 1953, 2080, 2211, 2346, 2485, 2628, 2775, 2926, 3081, 3240, 3403, 3570, 3741, 3916, 4095, 4278
Offset: 0
For n=6, a(6) = 0^2 - 1^2 + 2^2 - 3^2 + 4^2 - 5^2 + 6^2 - 7^2 + 8^2 - 9^2 + 10^2 - 11^2 + 12^2 = 78. - _Bruno Berselli_, Aug 29 2013
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Matthew Cho, Anton Dochtermann, Ryota Inagaki, Suho Oh, Dylan Snustad, and Bailee Zacovic, Chip-firing and critical groups of signed graphs, arXiv:2306.09315 [math.CO], 2023. See p. 22.
- Robert FERREOL, Illustration: triangular numbers of even order
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Milan Janjic, Two Enumerative Functions, University of Banja Luka (Bosnia and Herzegovina, 2017).
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Kival Ngaokrajang, Illustration of half circle spiral.
- Markus Scheuer, show that; strange sum yields triangular numbers, Mathematics StackExchange.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019).
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- Leo Tavares, Illustration: Squared Hexagons.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..50],n->n*(2*n+1)); # Muniru A Asiru, Oct 31 2018
-
a014105 n = n * (2 * n + 1)
a014105_list = scanl (+) 0 a004767_list -- Reinhard Zumkeller, Oct 03 2012
-
[ n*(2*n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 14 2014
-
seq(binomial(2*n+1,2), n=0..46); # Zerinvary Lajos, Jan 21 2007
-
Table[n*(2*n+1), {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
LinearRecurrence[{3,-3,1},{0,3,10},50] (* Harvey P. Dale, Feb 10 2015 *)
CoefficientList[Series[x*(3 + x)/(1 - x)^3,{x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)
-
a(n)=n*(2*n+1)
-
[n*(2*n+1) for n in range(50)] # G. C. Greubel, Dec 16 2018
A045944
Rhombic matchstick numbers: a(n) = n*(3*n+2).
Original entry on oeis.org
0, 5, 16, 33, 56, 85, 120, 161, 208, 261, 320, 385, 456, 533, 616, 705, 800, 901, 1008, 1121, 1240, 1365, 1496, 1633, 1776, 1925, 2080, 2241, 2408, 2581, 2760, 2945, 3136, 3333, 3536, 3745, 3960, 4181, 4408, 4641, 4880, 5125, 5376, 5633, 5896, 6165, 6440
Offset: 0
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- M. Janjic and B. Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Leo Tavares, Illustration: Square Stars
- Leo Tavares, Illustration: Split Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf. numbers of the form n*(d*n+10-d)/2:
A008587,
A056000,
A028347,
A140090,
A014106,
A028895,
A186029,
A007742,
A022267,
A033429,
A022268,
A049452,
A186030,
A135703,
A152734,
A139273.
-
[n*(3*n+2) : n in [0..100]]; // Wesley Ivan Hurt, Sep 24 2017
-
Table[n*(3n+2), {n,0,60}] (* Harvey P. Dale, May 05 2011 *)
LinearRecurrence[{3,-3,1},{0,5,16},60] (* Harvey P. Dale, Jan 19 2016 *)
CoefficientList[Series[x*(5 + x)/(1 - x)^3,{x, 0, 60}], x] (* Stefano Spezia, Sep 01 2018 *)
-
a(n)=n*(3*n+2) \\ Charles R Greathouse IV, Nov 20 2012
A033954
Second 10-gonal (or decagonal) numbers: n*(4*n+3).
Original entry on oeis.org
0, 7, 22, 45, 76, 115, 162, 217, 280, 351, 430, 517, 612, 715, 826, 945, 1072, 1207, 1350, 1501, 1660, 1827, 2002, 2185, 2376, 2575, 2782, 2997, 3220, 3451, 3690, 3937, 4192, 4455, 4726, 5005, 5292, 5587, 5890, 6201, 6520, 6847, 7182, 7525, 7876, 8235
Offset: 0
36--37--38--39--40--41--42
| |
35 16--17--18--19--20 43
| | | |
34 15 4---5---6 21 44
| | | | | |
33 14 3 0===7==22==45==76=>
| | | | | |
32 13 2---1 8 23
| | | |
31 12--11--10---9 24
| |
30--29--28--27--26--25
- S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
Sequences from spirals:
A001107,
A002939,
A007742,
A033951,
A033952,
A033953,
A033954,
A033989,
A033990,
A033991,
A002943,
A033996,
A033988.
-
List([0..50], n-> n*(4*n+3)) # G. C. Greubel, May 24 2019
-
[n*(4*n+3): n in [0..50]]; // G. C. Greubel, May 24 2019
-
Table[n(4n+3),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,7,22},50] (* Harvey P. Dale, May 06 2018 *)
-
a(n)=4*n^2+3*n
-
[n*(4*n+3) for n in (0..50)] # G. C. Greubel, May 24 2019
A195162
Generalized 12-gonal numbers: k*(5*k-4) for k = 0, +-1, +-2, ...
Original entry on oeis.org
0, 1, 9, 12, 28, 33, 57, 64, 96, 105, 145, 156, 204, 217, 273, 288, 352, 369, 441, 460, 540, 561, 649, 672, 768, 793, 897, 924, 1036, 1065, 1185, 1216, 1344, 1377, 1513, 1548, 1692, 1729, 1881, 1920, 2080, 2121, 2289, 2332, 2508, 2553, 2737, 2784, 2976, 3025
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares, Discrete Math. , Vol. 274, No. 1-3 (2004), pp. 9-24. See E(q).
- John Elias, Generalized 12-gonal & 20-gonal Cross Configurations
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Sequences of generalized k-gonal numbers:
A001318 (k=5),
A000217 (k=6),
A085787 (k=7),
A001082 (k=8),
A118277 (k=9),
A074377 (k=10),
A195160 (k=11), this sequence (k=12),
A195313 (k=13),
A195818 (k=14),
A277082 (k=15),
A274978 (k=16),
A303305 (k=17),
A274979 (k=18),
A303813 (k=19),
A218864 (k=20),
A303298 (k=21),
A303299 (k=22),
A303303 (k=23),
A303814 (k=24),
A303304 (k=25),
A316724 (k=26),
A316725 (k=27),
A303812 (k=28),
A303815 (k=29),
A316729 (k=30).
-
List([0..50], n-> (10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8); # G. C. Greubel, Jul 04 2019
-
[0] cat &cat[[5*n^2-4*n, 5*n^2+4*n]: n in [1..25]]; // Vincenzo Librandi, Sep 26 2011
-
nn = 25; Sort[Table[n*(5*n - 4), {n, -nn, nn}]] (* T. D. Noe, Sep 23 2011 *)
-
vector(50, n, n--; (10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8) \\ G. C. Greubel, Jul 04 2019
-
[(10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8 for n in (0..50)] # G. C. Greubel, Jul 04 2019
A062786
Centered 10-gonal numbers.
Original entry on oeis.org
1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, 4961, 5281, 5611, 5951, 6301, 6661, 7031, 7411, 7801, 8201, 8611, 9031, 9461, 9901, 10351, 10811
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Leo Tavares, Illustration: Pentagonal Stars.
- Leo Tavares, Illustration: Mid-section Stars.
- Leo Tavares, Illustration: Mid-section Star Pillars.
- Leo Tavares, Illustration: Trapezoidal Rays.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A001263,
A124080,
A101321,
A028387,
A016861,
A003154,
A005891,
A000217,
A004466,
A144390,
A000326,
A060544.
Cf. also
A016754,
A002378,
A069099,
A045943,
A003215,
A046092,
A001844,
A028896,
A005448,
A024966,
A082970.
-
List([1..50], n-> 1+5*n*(n-1)); # G. C. Greubel, Mar 30 2019
-
[1+5*n*(n-1): n in [1..50]]; // G. C. Greubel, Mar 30 2019
-
FoldList[#1+#2 &, 1, 10Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
1+5*Pochhammer[Range[50]-1, 2] (* G. C. Greubel, Mar 30 2019 *)
-
j=[]; for(n=1,75,j=concat(j,(5*n*(n-1)+1))); j
-
for (n=1, 1000, write("b062786.txt", n, " ", 5*n*(n - 1) + 1) ) \\ Harry J. Smith, Aug 11 2009
-
def a(n): return(5*n**2-5*n+1) # Torlach Rush, May 10 2024
-
[1+5*rising_factorial(n-1, 2) for n in (1..50)] # G. C. Greubel, Mar 30 2019
A147875
Second heptagonal numbers: a(n) = n*(5*n+3)/2.
Original entry on oeis.org
0, 4, 13, 27, 46, 70, 99, 133, 172, 216, 265, 319, 378, 442, 511, 585, 664, 748, 837, 931, 1030, 1134, 1243, 1357, 1476, 1600, 1729, 1863, 2002, 2146, 2295, 2449, 2608, 2772, 2941, 3115, 3294, 3478, 3667, 3861, 4060, 4264, 4473, 4687, 4906, 5130, 5359, 5593
Offset: 0
G.f. = 4*x + 13*x^2 + 27*x^3 + 46*x^4 + 70*x^5 + 99*x^6 + 133*x^7 + ... - _Michael Somos_, Jan 25 2019
-
List([0..50], n-> n*(5*n+3)/2); # G. C. Greubel, Jul 04 2019
-
[n*(5*n+3)/2: n in [0..50]]; // G. C. Greubel, Jul 04 2019
-
Table[(n(5n+3))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 4, 13}, 50] (* Harvey P. Dale, May 15 2013 *)
-
a(n)=n*(5*n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(5*n+3)/2 for n in (0..50)] # G. C. Greubel, Jul 04 2019
A131242
Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0
As square array :
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12, 14, 16, 18, 20, 22, 24, 26, 28, 30
33, 36, 39, 42, 45, 48, 51, 54, 57, 60
64, 68, 72, 76, 80, 84, 88, 92, 96, 100
105, 110, 115, 120, 125, 130, 135, 140, 145, 150
156, 162, 168, 174, 180, 186, 192, 198, 204, 210
... - _Philippe Deléham_, Mar 27 2013
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
Cf.
A008728,
A059995,
A010879,
A002266,
A130488,
A000217,
A002620,
A130518,
A130519,
A130520,
A174709,
A174738,
A118729,
A218470.
-
Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
-
for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016
A179986
Second 9-gonal (or nonagonal) numbers: a(n) = n*(7*n+5)/2.
Original entry on oeis.org
0, 6, 19, 39, 66, 100, 141, 189, 244, 306, 375, 451, 534, 624, 721, 825, 936, 1054, 1179, 1311, 1450, 1596, 1749, 1909, 2076, 2250, 2431, 2619, 2814, 3016, 3225, 3441, 3664, 3894, 4131, 4375, 4626, 4884, 5149, 5421, 5700, 5986, 6279, 6579, 6886
Offset: 0
-
[n*(7*n+5)/2: n in [0..50]]; // Bruno Berselli, Sep 23 2016
-
I:=[0, 6, 19]; [n le 3 select I[n] else 3*Self(n-1) -3*Self(n-2) +Self(n-3): n in [1..60]]; // Vincenzo Librandi, Oct 15 2012
-
f[n_] := n (7 n + 5)/2; f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*)
LinearRecurrence[{3, -3, 1}, {0, 6, 19}, 60] (* or *) Array[(#(7# + 5))/2&, 60, 0] (* Harvey P. Dale, Aug 19 2011 *)
CoefficientList[Series[x (6 + x)/(1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 15 2012 *)
-
a(n)=n*(7*n+5)/2 \\ Charles R Greathouse IV, Sep 24 2015
A062728
Second 11-gonal (or hendecagonal) numbers: a(n) = n*(9*n+7)/2.
Original entry on oeis.org
0, 8, 25, 51, 86, 130, 183, 245, 316, 396, 485, 583, 690, 806, 931, 1065, 1208, 1360, 1521, 1691, 1870, 2058, 2255, 2461, 2676, 2900, 3133, 3375, 3626, 3886, 4155, 4433, 4720, 5016, 5321, 5635, 5958, 6290, 6631, 6981, 7340, 7708, 8085, 8471, 8866, 9270
Offset: 0
The spiral begins:
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
-
List([0..50], n-> n*(9*n+7)/2); # G. C. Greubel, May 24 2019
-
[n*(9*n+7)/2: n in [0..50]]; // G. C. Greubel, May 24 2019
-
Table[n*(9*n+7)/2, {n,0,50}] (* G. C. Greubel, May 24 2019 *)
LinearRecurrence[{3,-3,1},{0,8,25},50] (* Harvey P. Dale, Sep 06 2019 *)
-
a(n)=n*(9*n+7)/2 \\ Charles R Greathouse IV, Jun 17 2017
-
[n*(9*n+7)/2 for n in (0..50)] # G. C. Greubel, May 24 2019
A211013
Second 13-gonal numbers: a(n) = n*(11*n+9)/2.
Original entry on oeis.org
0, 10, 31, 63, 106, 160, 225, 301, 388, 486, 595, 715, 846, 988, 1141, 1305, 1480, 1666, 1863, 2071, 2290, 2520, 2761, 3013, 3276, 3550, 3835, 4131, 4438, 4756, 5085, 5425, 5776, 6138, 6511, 6895, 7290, 7696, 8113, 8541, 8980, 9430, 9891, 10363
Offset: 0
Showing 1-10 of 13 results.
Comments