1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341
Offset: 0
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 8*x^7 + 10*x^8 + 12*x^9 + ...
Recall that in a necklace the adjacent beads have distinct colors. Suppose we have n colors with labels 1,...,n. Two colorings of the beads are equivalent if the cyclic sequences of the distances modulo n between labels of adjacent colors have the same period. If n=4, all colorings are equivalent. E.g., for the colorings {1,2,3} and {1,2,4} we have the same period {1,1,2} of distances modulo 4. So, a(n-3)=a(1)=1. If n=5, then we have two such periods {1,1,3} and {1,2,2} modulo 5. Thus a(2)=2. - _Vladimir Shevelev_, Apr 23 2011
a(0) = 1, i.e., {1,2,3} Number of different distributions of 6 identical balls to 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016
a(3) = 3, i.e., {1,2,6}, {1,3,5}, {2,3,4} Number of different distributions of 9 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016
From _Gus Wiseman_, Apr 15 2019: (Start)
The a(0) = 1 through a(8) = 10 integer partitions of n with at most three parts are the following. The Heinz numbers of these partitions are given by A037144.
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(311) (222) (322) (71)
(321) (331) (332)
(411) (421) (422)
(511) (431)
(521)
(611)
The a(0) = 1 through a(7) = 8 integer partitions of n + 3 whose greatest part is 3 are the following. The Heinz numbers of these partitions are given by A080193.
(3) (31) (32) (33) (322) (332) (333) (3322)
(311) (321) (331) (3221) (3222) (3331)
(3111) (3211) (3311) (3321) (32221)
(31111) (32111) (32211) (33211)
(311111) (33111) (322111)
(321111) (331111)
(3111111) (3211111)
(31111111)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 5 unlabeled multigraphs with 3 vertices and n edges are the following.
{} {12} {12,12} {12,12,12} {12,12,12,12} {12,12,12,12,12}
{13,23} {12,13,23} {12,13,23,23} {12,13,13,23,23}
{13,23,23} {13,13,23,23} {12,13,23,23,23}
{13,23,23,23} {13,13,23,23,23}
{13,23,23,23,23}
The a(0) = 1 through a(8) = 10 strict integer partitions of n - 6 with three parts are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A007304.
(321) (421) (431) (432) (532) (542) (543) (643) (653)
(521) (531) (541) (632) (642) (652) (743)
(621) (631) (641) (651) (742) (752)
(721) (731) (732) (751) (761)
(821) (741) (832) (842)
(831) (841) (851)
(921) (931) (932)
(A21) (941)
(A31)
(B21)
The a(0) = 1 through a(8) = 10 integer partitions of n + 3 with three parts are the following. The Heinz numbers of these partitions are given by A014612.
(111) (211) (221) (222) (322) (332) (333) (433) (443)
(311) (321) (331) (422) (432) (442) (533)
(411) (421) (431) (441) (532) (542)
(511) (521) (522) (541) (551)
(611) (531) (622) (632)
(621) (631) (641)
(711) (721) (722)
(811) (731)
(821)
(911)
The a(0) = 1 through a(8) = 10 integer partitions of n whose greatest part is <= 3 are the following. The Heinz numbers of these partitions are given by A051037.
() (1) (2) (3) (22) (32) (33) (322) (332)
(11) (21) (31) (221) (222) (331) (2222)
(111) (211) (311) (321) (2221) (3221)
(1111) (2111) (2211) (3211) (3311)
(11111) (3111) (22111) (22211)
(21111) (31111) (32111)
(111111) (211111) (221111)
(1111111) (311111)
(2111111)
(11111111)
The a(0) = 1 through a(6) = 7 strict integer partitions of 2n+9 with 3 parts, all of which are odd, are the following. The Heinz numbers of these partitions are given by A307534.
(5,3,1) (7,3,1) (7,5,1) (7,5,3) (9,5,3) (9,7,3) (9,7,5)
(9,3,1) (9,5,1) (9,7,1) (11,5,3) (11,7,3)
(11,3,1) (11,5,1) (11,7,1) (11,9,1)
(13,3,1) (13,5,1) (13,5,3)
(15,3,1) (13,7,1)
(15,5,1)
(17,3,1)
The a(0) = 1 through a(8) = 10 strict integer partitions of n + 3 with 3 parts where 0 is allowed as a part (A = 10):
(210) (310) (320) (420) (430) (530) (540) (640) (650)
(410) (510) (520) (620) (630) (730) (740)
(321) (610) (710) (720) (820) (830)
(421) (431) (810) (910) (920)
(521) (432) (532) (A10)
(531) (541) (542)
(621) (631) (632)
(721) (641)
(731)
(821)
The a(0) = 1 through a(7) = 7 integer partitions of n + 6 whose distinct parts are 1, 2, and 3 are the following. The Heinz numbers of these partitions are given by A143207.
(321) (3211) (3221) (3321) (32221) (33221) (33321)
(32111) (32211) (33211) (322211) (322221)
(321111) (322111) (332111) (332211)
(3211111) (3221111) (3222111)
(32111111) (3321111)
(32211111)
(321111111)
(End)
Partitions of 2*n with <= n parts and no part >= 4: a(3) = 3 from (2^3), (1,2,3), (3^2) mapping to (1^3), (1,2), (3), the partitions of 3 with no part >= 4, respectively. - _Wolfdieter Lang_, May 21 2019
Comments