A350878 Integers m that divide the sum of values d*p < m, where d is a divisor of m, p is a prime, and d*p does not divide m.
1, 2, 5, 10, 18, 24, 32, 60, 71, 100, 512, 2990, 9910, 10031, 12618, 32674, 53586, 153878, 223500, 312608, 369119, 386110, 466569, 4491817, 7068356, 8765871, 65311881
Offset: 1
Links
- David A. Corneth, PARI program
- Jon E. Schoenfield, Magma program
Programs
-
Mathematica
q[n_] := Module[{ds = Divisors[n], s = 0, r}, Do[r = n/d; ps = Select[Range[2, r], PrimeQ[#] && ! Divisible[n, d*#] &]; s += Total[d*ps], {d, ds}]; Divisible[s, n]]; Select[Range[3000], q] (* Amiram Eldar, Jan 20 2022 *)
-
PARI
isok(m) = {my(d=divisors(m), s=0); forprime(p=2, m, for(k=1, #d, my(x=d[k]*p); if ((x < m) && (m % x), s+=x););); (s % m) == 0;} \\ Michel Marcus, Jan 21 2022
-
PARI
\\ See Corneth link \\ David A. Corneth, Jan 21 2022
-
Python
import sympy A350878=[] for m in range(1,15001): sum=0 primes_lessthan_m_by2 = list(sympy.primerange(2,-(m//-2))) primes_between_m_by2_and_m = list(sympy.primerange(m//2+1,m)) divisors_of_m=sympy.divisors(m,generator=False) divisors_of_m.remove(m) if m%2==0: divisors_of_m.remove(m//2) for p in primes_between_m_by2_and_m: sum+=p for p in primes_lessthan_m_by2: for d in divisors_of_m: if p< m//d and m%(d*p)!=0: sum+=d*p if sum%m==0: A350878.append(m) print(A350878)
Extensions
a(16)-a(20) from Amiram Eldar, Jan 21 2022
a(21)-a(27) from David A. Corneth, Jan 21 2022
Comments