cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A337354 a(n) is the numerator of Product_{i=0..n-1} (n-i)^((-1)^ceiling(i/2)).

Original entry on oeis.org

1, 2, 3, 2, 5, 9, 7, 40, 45, 7, 308, 48, 975, 539, 88, 1664, 1105, 24255, 13376, 56576, 41769, 48279, 55936, 226304, 348075, 370139, 671232, 870400, 2082925, 4283037, 13872128, 80773120, 343682625, 4023459, 1553678336, 1900544, 14411758075, 59457783, 1471905792, 1406402560
Offset: 1

Views

Author

Devansh Singh, Aug 24 2020

Keywords

Comments

a(n) is the numerator of (n/(n-1)) * ((n-3)/(n-2)) * ((n-4)/(n-5)) ...

Examples

			a(n)/A337355(n) equals 1, 2, 3/2, 2/3, 5/6, 9/5, 7/5, 40/63, 45/56, 7/4 ...
a(4) = numerator of (4*1)/(3*2) = numerator of 2/3 = 2.
a(5) = numerator of (5*2)/(4*3) = numerator of 5/6 = 5.
                      12  *   9*8  *  5*4  *  1
a(12) = numerator of --------------------------- = 48.
                        11*10  *  7*6  *  3*2
		

Crossrefs

Cf. A337355 (denominators).

Programs

  • PARI
    a(n) = {numerator(prod(i=0, n-1, (n-i)^(-1)^((i+1)\2)))} \\ Andrew Howroyd, Aug 24 2020

Formula

a(n) = numerator of (n*A337355(n-2))/(a(n-2)*(n-1)) for n>=3.
Conjecture: a(4*n)/A337355(4*n) ~ 0.5990701173677... (=A076390). - Andrew Howroyd, Aug 25 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Aug 25 2020
Showing 1-1 of 1 results.