cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 263 results. Next

A259167 Positive octagonal numbers (A000567) that are squares (A000290) divided by 2.

Original entry on oeis.org

8, 78408, 752875208, 7229107670408, 69413891098384008, 666512175097575576008, 6399849835873029582446408, 61451357457540654953074835208, 590055927907455532986394985222408, 5665716958316030570194709695030728008, 54402213643694597627554069505290065112008
Offset: 1

Views

Author

Colin Barker, Jun 19 2015

Keywords

Comments

Intersection of A000567 and A001105. - Michel Marcus, Jun 20 2015

Examples

			8 is in the sequence because 8 is the 2nd octagonal number, and 2*8 is the 4th square.
		

Crossrefs

Programs

  • Magma
    I:=[8, 78408, 752875208]; [n le 3 select I[n] else 9603*Self(n-1)-9603*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 20 2015
  • Mathematica
    LinearRecurrence[{9603, -9603, 1}, {8, 78408, 752875208}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
  • PARI
    Vec(-8*x*(x^2+198*x+1)/((x-1)*(x^2-9602*x+1)) + O(x^20))
    

Formula

G.f.: -8*x*(x^2+198*x+1) / ((x-1)*(x^2-9602*x+1)).

A324320 Terms of A324315 (squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p) that are also octagonal numbers (A000567) with index equal to their largest prime factor.

Original entry on oeis.org

1045, 2465, 2821, 15841, 20501, 34133, 51221, 68101, 89441, 116033, 118405, 162401, 170885, 216545, 300833, 364705, 439301, 472033, 530881, 642181, 687365, 746005, 970145, 976981, 997633, 1104133, 1148245, 1193221, 1231361, 1239061, 1398101, 1654661, 1971541
Offset: 1

Views

Author

Keywords

Comments

2465 is also a Carmichael number (A002997).
2821 is also a primary Carmichael number (A324316).
See the section on polygonal numbers in Kellner and Sondow 2019.
Subsequence of the special polygonal numbers A324973. - Jonathan Sondow, Mar 27 2019

Examples

			A324315(4) = 1045 = 5 * 11 * 19 = 19 * (3 * 19 - 2) = A000567(19), so 1045 is a member.
		

Crossrefs

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    ON[n_] := n(3n - 2);
    TestS[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # &];
    Select[ON@ Prime[Range[100]], TestS[#] &]

Extensions

More terms from Amiram Eldar, Dec 05 2020

A244645 Decimal expansion of the sum of the reciprocals of the octagonal numbers (A000567).

Original entry on oeis.org

1, 2, 7, 7, 4, 0, 9, 0, 5, 7, 5, 5, 9, 6, 3, 6, 7, 3, 1, 1, 9, 4, 9, 5, 3, 4, 9, 2, 1, 0, 2, 4, 3, 3, 2, 1, 1, 5, 5, 6, 6, 3, 4, 4, 8, 0, 3, 9, 0, 2, 4, 7, 2, 3, 2, 6, 9, 3, 4, 9, 1, 9, 8, 4, 0, 7, 5, 1, 5, 1, 5, 1, 5, 1, 9, 5, 5, 4, 5, 1, 9, 6, 0, 7, 6, 2, 4, 3, 0, 6, 3, 1, 6, 3, 3, 1, 4, 1, 0, 8, 8, 0, 5, 0, 3
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.2774090575596367311949534921024332115566344803902472326934919840751515151955452...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[1/(3n^2 - 2n), {n, 1 , Infinity}], 10, 111][[1]]
  • PARI
    sumpos(n=1, 1/(3*n^2 - 2*n)) \\ Michel Marcus, Sep 12 2016
    
  • PARI
    sumnumrat(1/(3*n-2)/n,1) \\ Charles R Greathouse IV, Feb 08 2023

Formula

Equals Sum_{n>=1} 1/(3*n^2 - 2*n).
Equals Pi/(4*sqrt(3)) + 3*log(3)/4. - Vaclav Kotesovec, Jul 05 2014

A322637 Numbers that are sums of consecutive octagonal numbers (A000567).

Original entry on oeis.org

0, 1, 8, 9, 21, 29, 30, 40, 61, 65, 69, 70, 96, 105, 126, 133, 134, 135, 161, 176, 201, 222, 225, 229, 230, 231, 280, 294, 309, 334, 341, 355, 363, 364, 401, 405, 408, 470, 481, 505, 510, 531, 534, 539, 540, 560, 621, 630, 645, 681, 695, 735, 736, 749, 756, 764, 765, 814, 833, 846
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms up to N
    Octa:= [seq(n*(3*n-2),n=0..floor((1+sqrt(1+3*N))/3))]:
    PS:= ListTools:-PartialSums(Octa):
    S:= select(`<=`,{0,seq(seq(PS[i]-PS[j],j=1..i-1),i=1..nops(PS))},N):
    sort(convert(S,list)); # Robert Israel, May 22 2025
  • Mathematica
    terms = 60;
    nmax = 17; kmax = 9; (* empirical *)
    T = Table[n(3n-2), {n, 0, nmax}];
    Union[T, Table[k MovingAverage[T, k], {k, 2, kmax}]//Flatten][[1 ;; terms]] (* Jean-François Alcover, Dec 26 2018 *)

A344376 Numbers that are both octagonal numbers (A000567) and octagonal pyramidal numbers (A002414).

Original entry on oeis.org

0, 1, 1045, 5985, 123395663059845, 774611255177760
Offset: 1

Views

Author

Seiichi Manyama, May 16 2021

Keywords

Comments

Terms correspond to integral points on an elliptic curve, which allows all of them to be found efficiently. - Max Alekseyev, Feb 19 2024

Crossrefs

Intersection of A000567 and A002414.
Cf. A378361 (octagonal indices), A378918 (octagonal pyramidal indices).

Programs

  • PARI
    for(k=0, 1e5, if(ispolygonal(m=k*(k+1)*(2*k-1)/2, 8), print1(m", ")))

Extensions

Keywords 'fini' and 'full' added by Max Alekseyev, Feb 19 2024

A258128 Octagonal numbers (A000567) that are the sum of two consecutive octagonal numbers.

Original entry on oeis.org

5461, 813281, 7272157205, 1083057360705, 9684433559760981, 1442322650052752161, 12896895753596262561301, 1920761265591267733640321, 17174976631595008767000306005, 2557904668044167195987033355105, 22872156829955018609383449248248341
Offset: 1

Views

Author

Colin Barker, May 21 2015

Keywords

Examples

			5461 is in the sequence because Oct(43) = 5461 = 2640 + 2821 = Oct(30) + Oct(31).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-x*(x^4 +20*x^3 -1146230*x^2 +807820*x +5461)/((x-1)*(x^2 -1154*x +1)*(x^2 +1154*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
    LinearRecurrence[{1,1331714,-1331714,-1,1},{5461,813281,7272157205,1083057360705,9684433559760981},20] (* Harvey P. Dale, Feb 19 2018 *)
  • PARI
    Vec(-x*(x^4 +20*x^3 -1146230*x^2 +807820*x +5461)/((x-1)*(x^2 -1154*x +1)*(x^2 +1154*x +1)) + O('x^20))

Formula

G.f.: -x*(x^4+20*x^3-1146230*x^2+807820*x+5461) / ((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)).

A258129 Octagonal numbers (A000567) that are the sum of three consecutive octagonal numbers.

Original entry on oeis.org

698901, 5102520783381, 37252493940331837461, 271973082264557457061125141, 1985621622943208359132836202790421, 14496630316026749501691464257547633057301, 105837027604506739193825102426073141683789429781, 772695182809023513889440668692977953487035688873891861
Offset: 1

Views

Author

Colin Barker, May 21 2015

Keywords

Examples

			698901 is in the sequence because Oct(483) = 698901 = 231296 + 232965 + 234640 = Oct(278) + Oct(279) + Oct(280).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
    LinearRecurrence[{7300803,-7300803,1},{698901,5102520783381,37252493940331837461},20] (* Harvey P. Dale, Sep 16 2018 *)
  • PARI
    Vec(-21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)) + O('x^20))

Formula

G.f.: -21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)).

A258130 Octagonal numbers (A000567) that are the sum of ten consecutive octagonal numbers.

Original entry on oeis.org

1045, 1325345, 1910970885, 2755618515265, 3973599987865685, 5729928426883626945, 8262552817966202013445, 11914595433578836419585185, 17180838352667864150839647765, 24774756989951626526674352316385, 35725182398671892783600265200403845
Offset: 1

Views

Author

Colin Barker, May 21 2015

Keywords

Examples

			1045 is in the sequence because Oct(19) = 1045 = 1+8+21+40+65+96+133+176+225+280 = Oct(1) + ... + Oct(10).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-95 x (63 x^2 - 1922 x + 11)/((x - 1) (x^2 - 1442 x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
    LinearRecurrence[{1443,-1443,1},{1045,1325345,1910970885},20] (* Harvey P. Dale, Jul 25 2019 *)
  • PARI
    Vec(-95*x*(63*x^2-1922*x+11)/((x-1)*(x^2-1442*x+1)) + O('x^20))

Formula

G.f.: -95*x*(63*x^2 - 1922*x + 11)/((x - 1)*(x^2 - 1442*x + 1)).

A258131 Octagonal numbers (A000567) that are the sum of eleven consecutive octagonal numbers.

Original entry on oeis.org

49665, 348161, 19701781, 138502485, 7841194625, 55123576321, 3120775694421, 21939044808725, 1242060885120385, 8731684710231681, 494337111502154261, 3475188575627335765, 196744928316972210945, 1383116321414969338241, 78303987133043437737301
Offset: 1

Views

Author

Colin Barker, May 21 2015

Keywords

Examples

			49665 is in the sequence because Oct(129) = 49665 = 3400 + 3605 + 3816 + 4033 + 4256 + 4485 + 4720 + 4961 + 5208 + 5461 + 5720 = Oct(34) + ... + Oct(44).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-11*x*(95*x^4 -64*x^3 -37550*x^2 +27136*x +4515)/((x-1)*(x^2 -20*x +1)*(x^2 +20*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
    Select[Total/@Partition[Table[n(3n-2),{n,5*10^6}],11,1],IntegerQ[(Sqrt[1+3#]+1)/3]&] (* Harvey P. Dale, Aug 31 2018 *)
  • PARI
    Vec(-11*x*(95*x^4 -64*x^3 -37550*x^2 +27136*x +4515)/((x-1)*(x^2 -20*x +1)*(x^2 +20*x +1)) + O('x^20))

Formula

G.f.: -11*x*(95*x^4 -64*x^3 -37550*x^2 +27136*x +4515)/((x-1)*(x^2 -20*x +1)*(x^2 +20*x +1)).

A258132 Octagonal numbers (A000567) that are the sum of fifteen consecutive octagonal numbers.

Original entry on oeis.org

4715040, 8463840, 1122749669280, 2015496399840, 267373851637578960, 479974343542849680, 63672943775553479639280, 114302050117965712710960, 15163202176330482896520455040, 27220118818712616412771202880, 3610995292612020914167620625112640
Offset: 1

Views

Author

Colin Barker, May 21 2015

Keywords

Examples

			4715040 is in the sequence because Oct(1254) = 4715040 = 300833 + 302736 + 304645 + 306560 + 308481 + 310408 + 312341 + 314280 + 316225 + 318176 + 320133 + 322096 + 324065 + 326040 + 328021 = Oct(317) + ... + Oct(331).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-240*x*(7*x^4 +4*x^3 -449376*x^2 +15620*x +19646)/((x-1)*(x^2 -488*x +1)*(x^2 +488*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
  • PARI
    Vec(-240*x*(7*x^4 +4*x^3 -449376*x^2 +15620*x +19646)/((x-1)*(x^2 -488*x +1)*(x^2 +488*x +1)) + O('x^20))

Formula

G.f.: -240*x*(7*x^4 +4*x^3 -449376*x^2 +15620*x +19646)/((x-1)*(x^2 -488*x +1)*(x^2 +488*x +1)).
Showing 1-10 of 263 results. Next