cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A322636 Numbers that are sums of consecutive heptagonal numbers (A000566).

Original entry on oeis.org

0, 1, 7, 8, 18, 25, 26, 34, 52, 55, 59, 60, 81, 89, 107, 112, 114, 115, 136, 148, 170, 188, 189, 193, 195, 196, 235, 248, 260, 282, 286, 300, 307, 308, 337, 341, 342, 396, 403, 424, 430, 448, 449, 455, 456, 469, 521, 530, 540, 572, 585, 616, 619, 628, 637, 644, 645, 684, 697
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms up to N
    Hepta:= [seq(n*(5*n-3)/2,n=0..floor((3+sqrt(9+40*N))/10))]:
    PS:= ListTools:-PartialSums(Hepta):
    S:= select(`<=`,{0,seq(seq(PS[i]-PS[j],j=1..i-1),i=1..nops(PS))},N):
    sort(convert(S,list)); # Robert Israel, May 22 2025
  • Mathematica
    terms = 59;
    nmax = 17; kmax = 9; (* empirical *)
    T = Table[n(5n-3)/2, {n, 0, nmax}];
    Union[T, Table[k MovingAverage[T, k], {k, 2, kmax}]//Flatten][[1 ;; terms]] (* Jean-François Alcover, Dec 26 2018 *)

A334012 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero octagonal numbers in exactly n ways.

Original entry on oeis.org

1, 1045, 5985
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 12 2020

Keywords

Examples

			From _Seiichi Manyama_, May 16 2021: (Start)
Let S(k, m) denote the sum of m octagonal numbers starting from k*(3*k-2). We have
a(1) = S(1, 1);
a(2) = S(19, 1) = S(1, 10);
a(3) = S(45, 1) = S(11, 9) = S(1, 18). (End)
		

Crossrefs

A319184 Numbers that are sums of consecutive pentagonal numbers.

Original entry on oeis.org

0, 1, 5, 6, 12, 17, 18, 22, 34, 35, 39, 40, 51, 57, 69, 70, 74, 75, 86, 92, 108, 117, 120, 121, 125, 126, 145, 156, 162, 176, 178, 190, 195, 196, 209, 210, 213, 247, 248, 262, 270, 279, 282, 287, 288, 321, 330, 354, 365, 376, 386, 387, 399, 404, 405, 424, 425, 438, 457, 475
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    anmax = 1000; nmax = Floor[Sqrt[2*anmax/3]] + 1; Select[Union[Flatten[Table[Sum[k*(3*k-1)/2, {k, i, j}], {i, 0, nmax}, {j, i, nmax}]]], # <= anmax &] (* Vaclav Kotesovec, Dec 21 2018 *)
    Module[{nn=20,pn},pn=PolygonalNumber[5,Range[0,nn]];Take[Union[Flatten[Table[Total/@Partition[pn,d,1],{d,nn}]]],60]] (* Harvey P. Dale, Jun 22 2025 *)

A319185 Numbers that are sums of consecutive hexagonal numbers (A000384).

Original entry on oeis.org

0, 1, 6, 7, 15, 21, 22, 28, 43, 45, 49, 50, 66, 73, 88, 91, 94, 95, 111, 120, 139, 153, 154, 157, 160, 161, 190, 202, 211, 230, 231, 245, 251, 252, 273, 276, 277, 322, 325, 343, 350, 364, 365, 371, 372, 378, 421, 430, 435, 463, 475, 496, 503, 507, 518, 524, 525, 554, 561
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    anmax = 1000; nmax = Floor[Sqrt[anmax/2]] + 1; Select[Union[Flatten[Table[Sum[k*(2*k-1), {k, i, j}], {i, 0, nmax}, {j, i, nmax}]]], # <= anmax &] (* Vaclav Kotesovec, Dec 21 2018 *)

A320728 Numbers that are sums of consecutive odd squares (or centered octagonal numbers).

Original entry on oeis.org

0, 1, 9, 10, 25, 34, 35, 49, 74, 81, 83, 84, 121, 130, 155, 164, 165, 169, 202, 225, 251, 276, 285, 286, 289, 290, 361, 371, 394, 420, 441, 445, 454, 455, 514, 515, 529, 596, 625, 645, 650, 670, 679, 680, 683, 729, 802, 804, 841, 875, 885, 934, 959, 961, 968, 969, 970, 1044, 1089
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

Programs

  • PARI
    ok(n)={my(i=sqrtint(n)); i=i-(i%2==0); while(i>0, my(a=i^2, j=i); while(j>0 && a<=n, if(a==n, return(1)); j-=2; a=a+j^2); i-=2); 0}
    concat([0], select(ok, [1..1200])) \\ Antonio Roldán, Mar 12 2020

A322653 Numbers that are sums of consecutive octagonal pyramidal numbers (A002414).

Original entry on oeis.org

0, 1, 9, 10, 30, 39, 40, 70, 100, 109, 110, 135, 205, 231, 235, 244, 245, 364, 366, 436, 466, 475, 476, 540, 595, 730, 765, 800, 830, 839, 840, 904, 1045, 1135, 1270, 1305, 1340, 1370, 1379, 1380, 1386, 1669, 1794, 1810, 1900, 2035, 2105, 2135, 2144, 2145, 2275, 2350, 2431, 2714
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

Showing 1-6 of 6 results.