cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Antonio Roldán

Antonio Roldán's wiki page.

Antonio Roldán has authored 114 sequences. Here are the ten most recent ones:

A352721 Perfect cubes whose decimal digits appear in nonincreasing order.

Original entry on oeis.org

0, 1, 8, 64, 1000, 8000, 64000, 1000000, 8000000, 64000000, 1000000000, 8000000000, 64000000000, 1000000000000, 8000000000000, 64000000000000, 1000000000000000, 8000000000000000, 64000000000000000, 1000000000000000000, 8000000000000000000, 64000000000000000000
Offset: 1

Author

Antonio Roldán, Mar 30 2022

Keywords

Examples

			64 is in the sequence because it is a perfect cube (64 = 4^3) whose digits appear in nonincreasing order.
		

Crossrefs

Intersection of A000578 and A009996.

Programs

  • Mathematica
    Select[Range[0, 4*10^6]^3, Max@ Differences[IntegerDigits[#]] <= 0 &] (* Amiram Eldar, Mar 30 2022 *)
  • PARI
    ok(n) = digits(n) == vecsort(digits(n),,4) && ispower(n,3)

Formula

a(n) = A004647(n-1)^3.

A337784 Smaller of two consecutive oblong numbers which are anagrams of each other.

Original entry on oeis.org

23256, 530712, 809100, 11692980, 17812620, 20245500, 22834062, 23527350, 29154600, 83768256, 182236500, 189847062, 506227500, 600127506, 992218500, 1363566402, 1640209500, 2175895962, 2422657620, 2477899062, 2520190602, 3041687952, 3764129256, 4760103042
Offset: 1

Author

Antonio Roldán, Sep 21 2020

Keywords

Comments

All terms are multiples of 9.
The indices of these oblong numbers are 152, 728, 899, 3419, 4220, 4499, 4778, 4850, 5399, 9152, 13499, 13778, 22499, 24497, 31499, 36926, 40499, 46646, 49220, 49778, 50201, 55151, 61352, 68993.

Examples

			530712 is in the sequence because it is an oblong number, 530712 = 728 * 729, and the next oblong number, 532170 = 729 * 730, is an anagram of 530712.
		

Crossrefs

Subsequence of A008591.

Programs

  • Mathematica
    s = {}; o1 = 1; d1 = Sort @ IntegerDigits[o1]; Do[o2 = n*(n + 1); d2 = Sort @ IntegerDigits[o2]; If[d2 == d1, AppendTo[s, o1]]; o1 = o2; d1 = d2, {n, 2, 70000}]; s (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    ok(k) = {my(b, m=0); if(issquare(4*k + 1), b=truncate(sqrt(4*k + 1) - 1)/2; if(vecsort(digits(k)) == vecsort(digits((b + 1)*(b + 2))), m = 1)); m}

A333821 Numbers k that can be represented in the form k = p^3 - q^3 - r^3, where p, q, r are positive integers satisfying p = q + r.

Original entry on oeis.org

6, 18, 36, 48, 60, 90, 126, 144, 162, 168, 210, 216, 252, 270, 288, 330, 360, 378, 384, 396, 468, 480, 486, 540, 546, 594, 630, 720, 750, 792, 816, 858, 918, 924, 972, 990, 1008, 1026, 1140, 1152, 1170, 1260, 1296, 1344, 1386, 1404, 1518, 1530, 1560, 1620, 1638, 1656, 1680, 1728, 1800
Offset: 1

Author

Antonio Roldán, Apr 06 2020

Keywords

Comments

An alternative representation of k is k = 3*q*r*(q+r), with q, r positive integers, then k is a multiple of 6.

Examples

			60 is in the sequence because 60 = 5^3 - 4^3 - 1^3, with 5 = 4 + 1.
		

Programs

  • PARI
    ok(n) = {my(i=1, a=0, m=0, j); if(n%6==0, while(a<=n&&m==0, j=1; while(j
    				

Formula

a(n) = 6 * A121741(n).

A329590 Odd numbers k that cannot be expressed as k = p+q+r, with p prime and (q, r) a pair of twin primes.

Original entry on oeis.org

1, 3, 5, 7, 9, 33, 57, 93, 99, 129, 141, 153, 177, 183, 195, 213, 225, 243, 255, 261, 267, 273, 297, 309, 327, 333, 351, 369, 393, 411, 423, 435, 453, 477, 489, 501, 513, 519, 525, 537, 561, 573, 591, 597, 603, 633, 645, 657, 663, 675, 687, 693, 705, 711, 723
Offset: 1

Author

Antonio Roldán, Feb 13 2020

Keywords

Examples

			33 can be expressed as the sum of three primes in 9 different ways:
33 = 11 + 11 + 11 = 13 + 13 + 7 = 17 + 11 + 5 = 17 + 13 + 3 = 19 + 7 + 7 = 19 + 11 + 3 = 23 + 5 + 5 = 23 + 7 + 3 = 29 + 2 + 2;
there is no pair of twin primes in the addends, so 33 is a term.
		

Crossrefs

Programs

  • PARI
    for(n = 0, 500, m = 2*n+1; v = 0; forprime(i = 3, m-8, j = (m-i)/2; if(isprime(j-1) && isprime(j+1), v = 1)); if(v == 0, print1(m,", ")))
    
  • PARI
    isok(k) = {if (! (k % 2), return (0)); forprime(p=3, k, if (isprime((k-p)\2-1) && isprime((k-p)\2+1), return(0));); return (1);} \\ Michel Marcus, Feb 16 2020

A332008 Numbers k such that phi(k) and phi(k+1) are perfect powers (A001597).

Original entry on oeis.org

1, 15, 16, 63, 101, 125, 255, 256, 272, 504, 512, 513, 629, 679, 1358, 1359, 1728, 1970, 2047, 2222, 2509, 2834, 3458, 3705, 4094, 4095, 4400, 4577, 4616, 4913, 5403, 6817, 7295, 7956, 8729, 11667, 11672, 16132, 16384, 16523, 17507, 23085, 24198, 24564, 24624, 25220, 25601, 27216, 27384, 28564, 29444
Offset: 1

Author

Antonio Roldán, Feb 04 2020

Keywords

Examples

			phi(101) = 10^2, and phi(102) = 2^5.
phi(3458) = 6^4, and phi(3459) = 48^2.
		

Crossrefs

Programs

  • Magma
    [1] cat [k:k in [3..30000]|IsPower(EulerPhi(k))  and IsPower(EulerPhi(k+1))]; // Marius A. Burtea, Feb 05 2020
  • Mathematica
    perfectPowerQ[1] = True; perfectPowerQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1; Select[Range[30000], And @@ perfectPowerQ /@ EulerPhi[# + {0, 1}] &] (* Amiram Eldar, Feb 04 2020 *)
  • PARI
    v=[1]; for(i = 2, 30000, if(ispower(eulerphi(i)), if(ispower(eulerphi(i+1)), v = concat(v, i)))); v
    

A309884 Numbers k such that A003132(k^3) = A003132(k), where A003132(n) is the sum of the squares of the digits of n.

Original entry on oeis.org

0, 1, 10, 74, 100, 740, 1000, 3488, 7400, 10000, 23658, 30868, 34880, 47508, 48517, 52187, 58947, 59468, 67685, 68058, 74000, 76814, 78368, 78845, 84878, 100000, 108478, 145877, 149217, 163871, 179685, 186884, 188647, 218977, 219878, 236580, 238758, 248967, 278638, 292597, 308680
Offset: 1

Author

Antonio Roldán, Aug 21 2019

Keywords

Comments

If k is in the sequence, then so are k*10^r, with r >= 1.

Examples

			74^3 = 405224, A003132(74) = 7^2 + 4^2 = 65, A003132(405224) = 4^2 + 0^2 + 5^2 + 2^2 + 2^2 + 4^2 = 65.
		

Programs

  • Magma
    [0] cat [k:k in [1..310000]| &+[c^2: c in Intseq(k)] eq &+[c^2: c in Intseq(k^3)]]; // Marius A. Burtea, Aug 26 2019
  • Mathematica
    digSum[n_] := Total[IntegerDigits[n]^2]; Select[Range[0, 310000], digSum[#] == digSum[#^3] &] (* Amiram Eldar, Aug 22 2019 *)
  • PARI
    for(i = 0, 400000, if(norml2(digits(i^3)) == norml2(digits(i)), print1(i, ", ")))
    

A309883 Numbers k such that A003132(k^2) = A003132(k), where A003132(n) is the sum of the squares of the digits of n.

Original entry on oeis.org

0, 1, 10, 35, 100, 152, 350, 377, 452, 539, 709, 1000, 1299, 1398, 1439, 1519, 1520, 1569, 1591, 1679, 1965, 2599, 2838, 3332, 3500, 3598, 3770, 4520, 4586, 4754, 4854, 5390, 5501, 5835, 5857, 6388, 6595, 6735, 6861, 6951, 7090, 7349, 7887, 8395, 9795, 10000, 10056, 10159, 10389, 11055, 11091, 12990, 12999
Offset: 1

Author

Antonio Roldán, Aug 21 2019

Keywords

Comments

If k is in the sequence, then so are k*10^r, r >= 1.

Examples

			377^2 = 142129, A003132(377) = 3^2 + 7^2 + 7^2 = 107, A003132(142129) = 1^2 + 4^2 + 2^2 + 1^2 + 2^2 + 9^2 = 107.
		

Programs

  • Magma
    [0] cat [k:k in [1..13000]| &+[c^2: c in Intseq(k)] eq &+[c^2: c in Intseq(k^2)]]; // Marius A. Burtea, Aug 24 2019
  • Maple
    filter:= proc(n) local t;
      add(t^2, t = convert(n,base,10)) = add(t^2, t = convert(n^2,base,10))
    end proc:
    select(filter, [$0..20000]); # Robert Israel, Apr 30 2023
  • Mathematica
    digSum[n_] := Total[IntegerDigits[n]^2]; Select[Range[0, 13000], digSum[#] == digSum[#^2] &] (* Amiram Eldar, Aug 22 2019 *)
  • PARI
    for(i = 0, 30000, if(norml2(digits(i^2)) == norml2(digits(i)), print1(i, ", ")))
    
  • Python
    def A003132(n):
        s = 0
        while n > 0:
            s, n = s+(n%10)**2, n//10
        return s
    n, a = 0, 0
    while n < 50:
        if A003132(a) == A003132(a*a):
            n = n+1
            print(n,a)
        a = a+1 # A.H.M. Smeets, Aug 23 2019
    

A308664 Numbers k such that tau(k) and phi(k) are the legs of a Pythagorean triple.

Original entry on oeis.org

20, 36, 60, 100, 300
Offset: 1

Author

Antonio Roldán, Jul 14 2019

Keywords

Comments

The sequence is finite since for all large enough n, we have tau(n) < n^(1/4) and phi(n) > n^(3/4) while, if x < y are the legs of a Pythagorean triangle, we always have y < x^2/2. - Giovanni Resta, Jul 27 2019
From Resta's inequality it can be deduced that phi(n) <= 2304. Then it's easy to see that the sequence is full. - Max Alekseyev, May 30 2024

Examples

			60 is in this sequence because tau(60) = 12 and phi(60) = 16, legs of the Pythagorean triple {12, 16, 20} (12^2 + 16^2 = 20^2).
		

Programs

  • Mathematica
    Select[Range[300], IntegerQ@Sqrt[DivisorSigma[0, #]^2 + EulerPhi[#]^2] &] (* Amiram Eldar, Jul 26 2019 *)
  • PARI
    for(i = 1,  2000, a = eulerphi(i); b = numdiv(i); if(issquare(a^2 + b^2), print1(i,", ")))

Extensions

"full" keyword added by Max Alekseyev, May 30 2024

A307735 Integers k such that if m = k + A003132(k) then k = m - A003132(m).

Original entry on oeis.org

0, 9, 205, 212, 217, 366, 457, 663, 1314, 1315, 1348, 1672, 1742, 1792, 1797, 2005, 2012, 2017, 2129, 2201, 2208, 2213, 2216, 2305, 2404, 2405, 2465, 2564, 2565, 2671, 2741, 2748, 2789, 2829, 3114, 3115, 3205, 3303, 3306, 3394, 3436, 3475, 3696, 3819, 4204, 4205, 4245, 4347, 4475, 4542, 4629, 4647, 4688
Offset: 1

Author

Antonio Roldán, Apr 25 2019

Keywords

Comments

A003132(n) is the sum of the squares of the digits of n.

Examples

			205 is in the sequence because 205 + 2^2 + 0^2 + 5^2 = 234 and 234 - 2^2 - 3^2 - 4^2 = 205.
		

Programs

  • Mathematica
    sod2[n_] := Total @ (IntegerDigits[n]^2); aQ[n_] := sod2[n + (s=sod2[n])] == s; Select[Range[0, 4700], aQ] (* Amiram Eldar, Jul 03 2019 *)
  • PARI
    for(i = 0 , 5000 , a = i + norml2(digits(i)) ; b = a - norml2(digits(a)) ; if(i == b , print1(i , ", ")))

A306214 Numbers that are the sum of fourth powers of three distinct positive integers in arithmetic progression.

Original entry on oeis.org

98, 353, 707, 962, 1568, 2177, 2658, 3107, 4322, 4737, 5648, 7187, 7793, 7938, 9587, 11312, 12657, 13058, 15392, 15938, 17123, 19362, 20657, 23153, 23603, 25088, 28593, 30963, 31202, 32738, 34832, 35747, 40962, 42528, 45233, 45377, 49712, 49763, 54722, 57153, 57267, 61250, 63938, 67667, 69152
Offset: 1

Author

Antonio Roldán, Jan 29 2019

Keywords

Comments

The remainder of a(n) divided by 16 is less than 5. - Jinyuan Wang, Feb 03 2019

Examples

			353 = 2^4 + 3^4 + 4^4, with 3 - 2 = 4 - 3 = 1;
7187 = 1^4 + 5^4 + 9^4, with 5 - 1 = 9 - 5 = 4.
		

Programs

  • Maple
    N:= 10^5: # for all terms <= N
    Res:= NULL:
    for a from 1 to floor((N/3)^(1/4)) do
      for d from 1 do
        v:= a^4 + (a+d)^4 + (a+2*d)^4;
        if v > N then break fi;
        Res:= Res, v
      od
    od:
    sort(convert({Res},list)); # Robert Israel, Feb 17 2019
  • PARI
    for(n=1, 70000, k=(n/3)^(1/4); a=2; v=0; while(a<=k&&v==0, d=sqrt(sqrt(2*n+30*a^4)/2-3*a^2); if(d==truncate(d)&&d>=1&&d<=a-1, v=1; print1(n,", ")); a+=1))