cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A258129 Octagonal numbers (A000567) that are the sum of three consecutive octagonal numbers.

Original entry on oeis.org

698901, 5102520783381, 37252493940331837461, 271973082264557457061125141, 1985621622943208359132836202790421, 14496630316026749501691464257547633057301, 105837027604506739193825102426073141683789429781, 772695182809023513889440668692977953487035688873891861
Offset: 1

Views

Author

Colin Barker, May 21 2015

Keywords

Examples

			698901 is in the sequence because Oct(483) = 698901 = 231296 + 232965 + 234640 = Oct(278) + Oct(279) + Oct(280).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
    LinearRecurrence[{7300803,-7300803,1},{698901,5102520783381,37252493940331837461},20] (* Harvey P. Dale, Sep 16 2018 *)
  • PARI
    Vec(-21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)) + O('x^20))

Formula

G.f.: -21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)).

A258130 Octagonal numbers (A000567) that are the sum of ten consecutive octagonal numbers.

Original entry on oeis.org

1045, 1325345, 1910970885, 2755618515265, 3973599987865685, 5729928426883626945, 8262552817966202013445, 11914595433578836419585185, 17180838352667864150839647765, 24774756989951626526674352316385, 35725182398671892783600265200403845
Offset: 1

Views

Author

Colin Barker, May 21 2015

Keywords

Examples

			1045 is in the sequence because Oct(19) = 1045 = 1+8+21+40+65+96+133+176+225+280 = Oct(1) + ... + Oct(10).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-95 x (63 x^2 - 1922 x + 11)/((x - 1) (x^2 - 1442 x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
    LinearRecurrence[{1443,-1443,1},{1045,1325345,1910970885},20] (* Harvey P. Dale, Jul 25 2019 *)
  • PARI
    Vec(-95*x*(63*x^2-1922*x+11)/((x-1)*(x^2-1442*x+1)) + O('x^20))

Formula

G.f.: -95*x*(63*x^2 - 1922*x + 11)/((x - 1)*(x^2 - 1442*x + 1)).

A258131 Octagonal numbers (A000567) that are the sum of eleven consecutive octagonal numbers.

Original entry on oeis.org

49665, 348161, 19701781, 138502485, 7841194625, 55123576321, 3120775694421, 21939044808725, 1242060885120385, 8731684710231681, 494337111502154261, 3475188575627335765, 196744928316972210945, 1383116321414969338241, 78303987133043437737301
Offset: 1

Views

Author

Colin Barker, May 21 2015

Keywords

Examples

			49665 is in the sequence because Oct(129) = 49665 = 3400 + 3605 + 3816 + 4033 + 4256 + 4485 + 4720 + 4961 + 5208 + 5461 + 5720 = Oct(34) + ... + Oct(44).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-11*x*(95*x^4 -64*x^3 -37550*x^2 +27136*x +4515)/((x-1)*(x^2 -20*x +1)*(x^2 +20*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
    Select[Total/@Partition[Table[n(3n-2),{n,5*10^6}],11,1],IntegerQ[(Sqrt[1+3#]+1)/3]&] (* Harvey P. Dale, Aug 31 2018 *)
  • PARI
    Vec(-11*x*(95*x^4 -64*x^3 -37550*x^2 +27136*x +4515)/((x-1)*(x^2 -20*x +1)*(x^2 +20*x +1)) + O('x^20))

Formula

G.f.: -11*x*(95*x^4 -64*x^3 -37550*x^2 +27136*x +4515)/((x-1)*(x^2 -20*x +1)*(x^2 +20*x +1)).

A258132 Octagonal numbers (A000567) that are the sum of fifteen consecutive octagonal numbers.

Original entry on oeis.org

4715040, 8463840, 1122749669280, 2015496399840, 267373851637578960, 479974343542849680, 63672943775553479639280, 114302050117965712710960, 15163202176330482896520455040, 27220118818712616412771202880, 3610995292612020914167620625112640
Offset: 1

Views

Author

Colin Barker, May 21 2015

Keywords

Examples

			4715040 is in the sequence because Oct(1254) = 4715040 = 300833 + 302736 + 304645 + 306560 + 308481 + 310408 + 312341 + 314280 + 316225 + 318176 + 320133 + 322096 + 324065 + 326040 + 328021 = Oct(317) + ... + Oct(331).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-240*x*(7*x^4 +4*x^3 -449376*x^2 +15620*x +19646)/((x-1)*(x^2 -488*x +1)*(x^2 +488*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
  • PARI
    Vec(-240*x*(7*x^4 +4*x^3 -449376*x^2 +15620*x +19646)/((x-1)*(x^2 -488*x +1)*(x^2 +488*x +1)) + O('x^20))

Formula

G.f.: -240*x*(7*x^4 +4*x^3 -449376*x^2 +15620*x +19646)/((x-1)*(x^2 -488*x +1)*(x^2 +488*x +1)).
Showing 1-4 of 4 results.