A294512 Denominators of partial sums of the reciprocals of octagonal numbers.
1, 8, 168, 420, 5460, 14560, 276640, 3043040, 136936800, 136936800, 4245040800, 72165693600, 2670130663200, 2670130663200, 114815618517600, 1320379612952400, 9242657290666800, 3080885763555600, 280080523959600, 8122335194828400, 165154148961510800, 14533565108612950400, 973748862277067676800
Offset: 0
Examples
The rationals V(3,1;n) begin: 1, 9/8, 197/168, 503/420, 6623/5460, 17813/14560, 340527/276640, 3763087/3043040, 169947523/136936800, 170436583/136936800, ... V(3,1,10^4) = 1.2773757281147540626 (Maple 20 digits) to be compared with 1.2774090575596367312 (20 digits from A244645). The series is V(3,1) = 1 + 1/(2*4) + 1/(3*6) + 1/(4*10) + ... .
References
- Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193.
Programs
-
Mathematica
Denominator@ Accumulate@ Array[1/PolygonalNumber[8, #] &, 23] (* Michael De Vlieger, Nov 01 2017 *)
Formula
a(n) = denominator(V(3,1;n)) with V(3,1;n) = Sum_{k=0..n} 1/((k + 1)*(3*k + 1)) = (1/2)*Sum_{k=0..n} (3/(3*k + 1) - 1/(k+1)), n >= 0.
a(n) = A250400(n+1)/(n+1), n >= 0. [conjecture].
Comments