cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001106 9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.

Original entry on oeis.org

0, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, 474, 559, 651, 750, 856, 969, 1089, 1216, 1350, 1491, 1639, 1794, 1956, 2125, 2301, 2484, 2674, 2871, 3075, 3286, 3504, 3729, 3961, 4200, 4446, 4699, 4959, 5226, 5500, 5781, 6069, 6364
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9, ... and the parallel line from 1, in the direction 1, 24, ..., in the square spiral whose vertices are the generalized 9-gonal (enneagonal) numbers A118277. Also sequence found by reading the same lines in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011
Number of ordered pairs of integers (x,y) with abs(x) < n, abs(y) < n and x+y <= n. - Reinhard Zumkeller, Jan 23 2012
Partial sums give A007584. - Omar E. Pol, Jan 15 2013

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093564 ((7, 1) Pascal, column m=2). Partial sums of A016993.

Programs

  • Haskell
    a001106 n = length [(x,y) | x <- [-n+1..n-1], y <- [-n+1..n-1], x + y <= n]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Haskell
    a001106 n = n*(7*n-5) `div` 2 -- James Spahlinger, Oct 18 2012
    
  • Mathematica
    Table[n(7n - 5)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 9}, 50] (* Harvey P. Dale, Nov 06 2011 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[9], n], {n, 0, 43}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    PolygonalNumber[9,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 19 2019 *)
  • PARI
    a(n)=n*(7*n-5)/2 \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 7, y + 7
    A001106 = aList()
    print([next(A001106) for i in range(49)]) # Peter Luschny, Aug 04 2019

Formula

a(n) = (7*n - 5)*n/2.
G.f.: x*(1+6*x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation.
a(n) = n + 7*A000217(n-1). - Floor van Lamoen, Oct 14 2005
Starting (1, 9, 24, 46, 75, ...) gives the binomial transform of (1, 8, 7, 0, 0, 0, ...). - Gary W. Adamson, Jul 22 2007
Row sums of triangle A131875 starting (1, 9, 24, 46, 75, 111, ...). A001106 = binomial transform of (1, 8, 7, 0, 0, 0, ...). - Gary W. Adamson, Jul 22 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 9. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 2*a(n-1) - a(n-2) + 7. - Mohamed Bouhamida, May 05 2010
a(n) = a(n-1) + 7*n - 6 (with a(0) = 0). - Vincenzo Librandi, Nov 12 2010
a(n) = A174738(7n). - Philippe Deléham, Mar 26 2013
a(7*a(n) + 22*n + 1) = a(7*a(n) + 22*n) + a(7*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: x*(2 + 7*x)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
a(n+2) + A000217(n) = (2*n+3)^2. - Ezhilarasu Velayutham, Mar 18 2020
Product_{n>=2} (1 - 1/a(n)) = 7/9. - Amiram Eldar, Jan 21 2021
Sum_{n>=1} 1/a(n) = A244646. - Amiram Eldar, Nov 12 2021
a(n) = A000217(3*n-2) - (n-1)^2. - Charlie Marion, Feb 27 2022
a(n) = 3*A000217(n) + 2*A005563(n-2). In general, if P(k,n) = the n-th k-gonal number, then P(m*k,n) = m*P(k,n) + (m-1)*A005563(n-2). - Charlie Marion, Feb 21 2023

A244645 Decimal expansion of the sum of the reciprocals of the octagonal numbers (A000567).

Original entry on oeis.org

1, 2, 7, 7, 4, 0, 9, 0, 5, 7, 5, 5, 9, 6, 3, 6, 7, 3, 1, 1, 9, 4, 9, 5, 3, 4, 9, 2, 1, 0, 2, 4, 3, 3, 2, 1, 1, 5, 5, 6, 6, 3, 4, 4, 8, 0, 3, 9, 0, 2, 4, 7, 2, 3, 2, 6, 9, 3, 4, 9, 1, 9, 8, 4, 0, 7, 5, 1, 5, 1, 5, 1, 5, 1, 9, 5, 5, 4, 5, 1, 9, 6, 0, 7, 6, 2, 4, 3, 0, 6, 3, 1, 6, 3, 3, 1, 4, 1, 0, 8, 8, 0, 5, 0, 3
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.2774090575596367311949534921024332115566344803902472326934919840751515151955452...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[1/(3n^2 - 2n), {n, 1 , Infinity}], 10, 111][[1]]
  • PARI
    sumpos(n=1, 1/(3*n^2 - 2*n)) \\ Michel Marcus, Sep 12 2016
    
  • PARI
    sumnumrat(1/(3*n-2)/n,1) \\ Charles R Greathouse IV, Feb 08 2023

Formula

Equals Sum_{n>=1} 1/(3*n^2 - 2*n).
Equals Pi/(4*sqrt(3)) + 3*log(3)/4. - Vaclav Kotesovec, Jul 05 2014

A244647 Decimal expansion of the sum of the reciprocals of the decagonal numbers (A001107).

Original entry on oeis.org

1, 2, 1, 6, 7, 4, 5, 9, 5, 6, 1, 5, 8, 2, 4, 4, 1, 8, 2, 4, 9, 4, 3, 3, 9, 3, 5, 2, 0, 0, 4, 7, 6, 0, 3, 8, 2, 1, 0, 8, 3, 6, 1, 7, 0, 0, 9, 2, 2, 7, 7, 2, 8, 9, 0, 9, 4, 9, 8, 3, 7, 4, 4, 1, 5, 4, 4, 6, 9, 6, 3, 5, 6, 3, 5, 0, 7, 2, 9, 5, 4, 8, 7, 1, 0, 5, 3, 5, 7, 9, 7, 8, 8, 6, 7, 7, 1, 5, 3, 2, 2, 0, 5, 6, 9
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Comments

For the partial sums of the reciprocals of the (positive) decagonal numbers see A250551(n+1)/A294515(n), n >= 0. - Wolfdieter Lang, Nov 07 2017

Examples

			1.216745956158244182494339352004760382108361700922772890949837441544696356350....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Log[2] + Pi/6, 10, 111][[1]] (* or *)
    RealDigits[ Sum[1/(4n^2 - 3n), {n, 1 , Infinity}], 10, 111][[1]]
  • PARI
    log(2)+Pi/6 \\ Charles R Greathouse IV, Feb 08 2023

Formula

Sum_{n>0} 1/(4n^2 - 3n) = log(2) + Pi/6, (A002162 + A019673).

A244649 Decimal expansion of the sum of the reciprocals of the Dodecagonal numbers (A051624).

Original entry on oeis.org

1, 1, 7, 7, 9, 5, 6, 0, 5, 7, 9, 2, 2, 6, 6, 3, 8, 5, 8, 7, 3, 5, 1, 7, 3, 9, 6, 8, 0, 9, 1, 8, 8, 7, 4, 1, 8, 4, 4, 5, 8, 5, 7, 2, 3, 4, 5, 6, 6, 6, 7, 9, 8, 0, 2, 8, 4, 2, 5, 2, 2, 8, 5, 7, 3, 2, 6, 6, 8, 9, 2, 5, 6, 8, 2, 8, 4, 8, 8, 7, 4, 5, 4, 0, 2, 4, 0, 7, 6, 9, 0, 2, 5, 6, 9, 5, 5, 9, 0, 3, 2, 2, 4, 4, 4
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Comments

From Wolfdieter Lang, Nov 09 2017: (Start)
In the Downey et al. link this is the instance k = 5 of the formula given there for S_{2*k+2}. A simpler formula is given in the Koecher reference as (5/4)*v_5(1) on p. 192. See the Kotesovec formula given below.
The partial sums are given in A294520/A294521. (End)

Examples

			1.1779560579226638587351739680918874184458572345666798028425228573...
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[1/(5n^2 - 4n), {n, 1 , Infinity}], 10, 111][[1]]

Formula

Equals Sum_{n>=1} 1/(5n^2 - 4n).
Equals Pi/8*sqrt(1+2/sqrt(5)) + (5*log(5) + sqrt(5)*log((3+sqrt(5))/2))/16. - Vaclav Kotesovec, Jul 04 2014
This is the value given in the Koecher reference (see a comment above), and rewritten with the golden section phi = (1 + sqrt(5))/2 this becomes
((5/2)*log(5) + (2*phi - 1)*(log(phi) + (Pi/5)*sqrt(3 + 4*phi)))/8. - Wolfdieter Lang, Nov 09 2017

A244648 Decimal expansion of the sum of the reciprocals of the hendecagonal numbers (A051682).

Original entry on oeis.org

1, 1, 9, 5, 4, 3, 4, 1, 1, 6, 5, 2, 9, 6, 2, 7, 9, 7, 4, 3, 5, 2, 4, 9, 9, 2, 3, 4, 6, 9, 8, 4, 9, 9, 3, 5, 4, 8, 8, 4, 6, 8, 2, 6, 2, 7, 0, 8, 4, 6, 5, 8, 0, 6, 2, 3, 8, 6, 0, 2, 1, 6, 0, 3, 0, 1, 7, 3, 5, 8, 4, 7, 3, 3, 7, 0, 3, 1, 7, 6, 0, 1, 4, 6, 4, 4, 8, 4, 1, 7, 5, 4, 8, 5, 5, 1, 1, 2, 3, 1, 8, 5, 5, 4, 7
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.195434116529627974352499234698499354884682627084658062386021603017...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[2/(9n^2 - 7n), {n, 1 , Infinity}], 10, 111][[1]]

Formula

Sum_{n=1..infinity} 2/(9n^2 - 7n).
Equals (5*log(3) + Pi*cot(2*Pi/9) - 4*cos(2*Pi/9)*log(cos(Pi/18)) + 4*cos(Pi/9)*log(sin(2*Pi/9)) - 4*log(sin(Pi/9))*sin(Pi/18))/7. - Vaclav Kotesovec, Jul 04 2014

A244641 Decimal expansion of the sum of the reciprocals of the pentagonal numbers (A000326).

Original entry on oeis.org

1, 4, 8, 2, 0, 3, 7, 5, 0, 1, 7, 7, 0, 1, 1, 1, 2, 2, 3, 5, 9, 1, 6, 5, 7, 4, 5, 3, 1, 2, 5, 4, 2, 1, 3, 8, 1, 6, 5, 8, 4, 0, 5, 4, 2, 5, 3, 7, 5, 5, 0, 7, 7, 7, 9, 6, 3, 4, 1, 9, 8, 0, 6, 5, 5, 2, 4, 3, 5, 9, 6, 9, 8, 5, 2, 9, 4, 7, 3, 0, 1, 6, 9, 3, 6, 7, 2, 2, 2, 7, 6, 2, 2, 9, 1, 3, 6, 0, 9, 7, 5, 0, 7, 6, 8
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.482037501770111223591657453125421381658405425375507779634198065524359698529473...
		

Crossrefs

Decimal expansion of the sum of the reciprocals of the m-gonal numbers: A000038 (m=3), A013661 (m=4), this sequence (m=5), A016627 (m=6), A244639 (m=7), A244645 (m=8), A244646 (m=9), A244647 (m=10), A244648 (m=11), A244649 (m=12), A275792 (m=14).

Programs

  • Magma
    SetDefaultRealField(RealField(139)); R:= RealField(); 3*Log(3)-Pi(R)*Sqrt(3)/3; // G. C. Greubel, Mar 24 2024
    
  • Mathematica
    RealDigits[Sum[2/(3*n^2-n), {n,1,Infinity}], 10, 111][[1]]
    RealDigits[3*Log[3] - Pi*Sqrt[3]/3, 10, 140][[1]] (* G. C. Greubel, Mar 24 2024 *)
  • SageMath
    numerical_approx(3*log(3)-pi*sqrt(3)/3, digits=139) # G. C. Greubel, Mar 24 2024

Formula

Sum_{n>=1} 2/(3*n^2 - n).
Equals 3*log(3) - Pi*sqrt(3)/3 = A016650 - A093602. - Michel Marcus, Jul 03 2014
Equals 2*A294514. - Hugo Pfoertner, Apr 24 2025

A365522 Decimal expansion of (Pi*sqrt(3) + 9*log(3))/24.

Original entry on oeis.org

6, 3, 8, 7, 0, 4, 5, 2, 8, 7, 7, 9, 8, 1, 8, 3, 6, 5, 5, 9, 7, 4, 7, 6, 7, 4, 6, 0, 5, 1, 2, 1, 6, 6, 0, 5, 7, 7, 8, 3, 1, 7, 2, 4, 0, 1, 9, 5, 1, 2, 3, 6, 1, 6, 3, 4, 6, 7, 4, 5, 9, 9, 2, 0, 3, 7, 5, 7, 5, 7, 5, 7, 5, 9, 7, 7, 7, 2, 5, 9, 8, 0, 3, 8, 1, 2, 1, 5, 3, 1, 5, 8, 1, 6, 5, 7, 0, 5, 4, 4, 0, 2, 5, 1, 6, 5, 6, 2, 7, 0, 9, 8, 6, 7, 5
Offset: 0

Views

Author

Claude H. R. Dequatre, Sep 08 2023

Keywords

Comments

This sequence is also the decimal expansion of Sum_{k>=1} 1/(f(k) +g(k)), where f(k) and g(k) are respectively the k-th triangular and the 13-gonal numbers (A000217 and A051865).

Examples

			0.63870452877981836559747674605121660577831724019512...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(139)); R:= RealField(); (Pi(R)*Sqrt(3)+9*Log(3))/24; // G. C. Greubel, Mar 24 2024
    
  • Mathematica
    RealDigits[(Pi*Sqrt[3] + 9*Log[3])/24, 10 , 100][[1]] (* Amiram Eldar, Sep 08 2023 *)
  • PARI
    (Pi*sqrt(3)+9*log(3))/24
    
  • SageMath
    numerical_approx((pi*sqrt(3)+9*log(3))/24, digits=139) # G. C. Greubel, Mar 24 2024

Formula

Equals Sum_{k>=1} 1/(6*k^2 - 4*k) = A244645/2 [Shamos].
Equals - Integral_{x=0..1} log(1-x^6)/x^5 dx [Shamos].
Showing 1-7 of 7 results.