A259156
Positive triangular numbers (A000217) that are pentagonal numbers (A000326) divided by 2.
Original entry on oeis.org
6, 105, 58311, 1008910, 559902916, 9687554415, 5376187741821, 93019896484620, 51622154137063026, 893177036357767525, 495675918647891434531, 8576285810087387291130, 4759480119234899417304336, 82349495455282056411663435, 45700527609217585557064800441
Offset: 1
6 is in the sequence because 6 is the 3rd triangular number, and 2*6 is the 3rd pentagonal number.
-
LinearRecurrence[{1, 9602, -9602, -1, 1}, {6, 105, 58311, 1008910, 559902916}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-x*(x^3+594*x^2+99*x+6)/((x-1)*(x^2-98*x+1)*(x^2+98*x+1)) + O(x^20))
A259158
Positive triangular numbers (A000217) that are heptagonal numbers (A000566) divided by 2.
Original entry on oeis.org
171, 355817826, 739874066553765, 1538466018777014327028, 3199027777735470191011289295, 6651936797966044301302839516949686, 13831784604089070782667939513452521937961, 28761287297921206463992005998270360082445758120
Offset: 1
171 is in the sequence because 171 is the 18th triangular number, and 2*171 is the 12th heptagonal number.
-
LinearRecurrence[{2079363, -2079363, 1}, {171, 355817826, 739874066553765}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-171*x*(1443*x+1) / ((x-1)*(x^2-2079362*x+1)) + O(x^20))
A259157
Positive triangular numbers (A000217) that are hexagonal numbers (A000384) divided by 2.
Original entry on oeis.org
3, 3570, 4119885, 4754343828, 5486508657735, 6331426236682470, 7306460390622912753, 8431648959352604634600, 9730115592632515125415755, 11228544962248963102125146778, 12957731156319710787337293966165, 14953210525847983999624135111807740
Offset: 1
3 is in the sequence because 3 is the 2nd triangular number, and 2*3 is the 2nd hexagonal number.
-
LinearRecurrence[{1155, -1155, 1}, {3, 3570, 4119885}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-3*x*(35*x+1)/((x-1)*(x^2-1154*x+1)) + O(x^20))
A259159
Positive squares (A000290) that are heptagonal numbers (A000566) divided by 2.
Original entry on oeis.org
9, 938961, 97353360225, 10093791093915321, 1046544448101974957529, 108507821458015176452612289, 11250307943363385076857772396401, 1166454428075294670080752381151042025, 120940328000452394039949183305644566845481
Offset: 1
9 is in the sequence because 9 is the 3rd square, and 2*9 is the 3rd heptagonal number.
-
LinearRecurrence[{103683, -103683, 1},{9, 938961, 97353360225}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-9*x*(x^2+646*x+1)/((x-1)*(x^2-103682*x+1)) + O(x^20))
A259160
Positive squares (A000290) that are octagonal numbers (A000567) divided by 2.
Original entry on oeis.org
4, 39204, 376437604, 3614553835204, 34706945549192004, 333256087548787788004, 3199924917936514791223204, 30725678728770327476537417604, 295027963953727766493197492611204, 2832858479158015285097354847515364004, 27201106821847298813777034752645032556004
Offset: 1
4 is in the sequence because 4 is the 2nd square, and 2*4 is the 2nd octagonal number.
-
LinearRecurrence[{9603, -9603, 1}, {4, 39204, 376437604}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-4*x*(x^2+198*x+1)/((x-1)*(x^2-9602*x+1)) + O(x^20))
A259161
Positive pentagonal numbers (A000326) that are triangular numbers (A000217) divided by 2.
Original entry on oeis.org
5, 48510, 465793515, 4472549283020, 42945417749765025, 412361896760694487530, 3959498889750770719498535, 38019107927025003687930446040, 365059470355795195660737423378045, 3505300996337237541709397051345542550, 33657899801770684519698434826282476187555
Offset: 1
5 is in the sequence because 5 is the 2nd pentagonal number, and 2*5 is the 4th triangular number.
-
LinearRecurrence[{9603, -9603, 1}, {5, 48510, 465793515}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-5*x*(99*x+1)/((x-1)*(x^2-9602*x+1)) + O(x^20))
A259162
Positive hexagonal numbers (A000384) that are pentagonal numbers (A000326) divided by 2.
Original entry on oeis.org
6, 58311, 559902916, 5376187741821, 51622154137063026, 495675918647891434531, 4759480119234899417304336, 45700527609217585557064800441, 438816461344227137284036796530846, 4213515616126741362983735763224383551, 40458176507232509223142693514443734326556
Offset: 1
6 is in the sequence because 6 is the 2nd hexagonal number, and 2*6 is the 3rd pentagonal number.
-
LinearRecurrence[{9603, -9603, 1}, {6, 58311, 559902916}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-x*(x^2+693*x+6)/((x-1)*(x^2-9602*x+1)) + O(x^20))
A259163
Positive heptagonal numbers (A000566) that are triangular numbers (A000217) divided by 2.
Original entry on oeis.org
18, 189, 37727235, 393298308, 78448579122960, 817809556618215, 163122994382238923193, 1700522115268371779430, 339191755844562643229618814, 3536001066647854270462804353, 705302447816298343956844397692383, 7352626249945315029422809413582264
Offset: 1
18 is in the sequence because 18 is the 3rd heptagonal number, and 2*18 is the 8th triangular number.
-
LinearRecurrence[{1, 2079362, -2079362, -1, 1}, {18, 189, 37727235, 393298308, 78448579122960}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-9*x*(2*x^4+19*x^3+33170*x^2+19*x+2)/((x-1)*(x^2-1442*x+1)*(x^2+1442*x+1)) + O(x^20))
A259164
Positive heptagonal numbers (A000566) that are squares (A000290) divided by 2.
Original entry on oeis.org
18, 1877922, 194706720450, 20187582187830642, 2093088896203949915058, 217015642916030352905224578, 22500615886726770153715544792802, 2332908856150589340161504762302084050, 241880656000904788079898366611289133690962
Offset: 1
18 is in the sequence because 18 is the 3rd heptagonal number, and 2*18 is the 6th square.
-
LinearRecurrence[{103683, -103683, 1}, {18, 1877922, 194706720450}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-18*x*(x^2+646*x+1)/((x-1)*(x^2-103682*x+1)) + O(x^20))
A259165
Positive heptagonal numbers (A000566) that are pentagonal numbers (A000326) divided by 2.
Original entry on oeis.org
540, 125482435, 29152330292086, 6772727677992549813, 1573453639577432827392256, 365547896447135621647431177175, 84924818396817988252797073116286650, 19729903659220000770419185998874515952681, 4583690677832384200588508141377728222042497188
Offset: 1
540 is in the sequence because 540 is the 15th heptagonal number, and 2*540 is the 27th pentagonal number.
-
LinearRecurrence[{232323, -232323, 1}, {540, 125482435, 29152330292086}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-x*(x^2+28015*x+540)/((x-1)*(x^2-232322*x+1)) + O(x^20))
Showing 1-10 of 11 results.
Comments