cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259164 Positive heptagonal numbers (A000566) that are squares (A000290) divided by 2.

Original entry on oeis.org

18, 1877922, 194706720450, 20187582187830642, 2093088896203949915058, 217015642916030352905224578, 22500615886726770153715544792802, 2332908856150589340161504762302084050, 241880656000904788079898366611289133690962
Offset: 1

Views

Author

Colin Barker, Jun 19 2015

Keywords

Comments

Intersection of A000566 and A001105 (even squares divided by 2). - Michel Marcus, Jun 20 2015

Examples

			18 is in the sequence because 18 is the 3rd heptagonal number, and 2*18 is the 6th square.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{103683, -103683, 1}, {18, 1877922, 194706720450}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
  • PARI
    Vec(-18*x*(x^2+646*x+1)/((x-1)*(x^2-103682*x+1)) + O(x^20))

Formula

G.f.: -18*x*(x^2+646*x+1) / ((x-1)*(x^2-103682*x+1)).

A259166 Positive heptagonal numbers (A000566) that are hexagonal numbers (A000384) divided by 2.

Original entry on oeis.org

189, 393298308, 817809556618215, 1700522115268371779430, 3536001066647854270462804353, 7352626249945315029422809413582264, 15288771624335254149144023973574781130123, 31790890742313650111822470662710981230881538170
Offset: 1

Views

Author

Colin Barker, Jun 19 2015

Keywords

Comments

Intersection of A000566 and A033991 (even hexagonal numbers divided by 2). - Michel Marcus, Jun 20 2015

Examples

			189 is in the sequence because 189 is the 9th heptagonal number, and 2*189 is the 14th hexagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[189,393298308,817809556618215]; [n le 3 select I[n] else 2079363*Self(n-1)-2079363*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 20 2015
  • Mathematica
    LinearRecurrence[{2079363, -2079363, 1},{189, 393298308, 817809556618215}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
  • PARI
    Vec(-9*x*(2*x^2+33189*x+21)/((x-1)*(x^2-2079362*x+1)) + O(x^20))
    

Formula

G.f.: -9*x*(2*x^2+33189*x+21) / ((x-1)*(x^2-2079362*x+1)).
Showing 1-2 of 2 results.