cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259167 Positive octagonal numbers (A000567) that are squares (A000290) divided by 2.

Original entry on oeis.org

8, 78408, 752875208, 7229107670408, 69413891098384008, 666512175097575576008, 6399849835873029582446408, 61451357457540654953074835208, 590055927907455532986394985222408, 5665716958316030570194709695030728008, 54402213643694597627554069505290065112008
Offset: 1

Views

Author

Colin Barker, Jun 19 2015

Keywords

Comments

Intersection of A000567 and A001105. - Michel Marcus, Jun 20 2015

Examples

			8 is in the sequence because 8 is the 2nd octagonal number, and 2*8 is the 4th square.
		

Crossrefs

Programs

  • Magma
    I:=[8, 78408, 752875208]; [n le 3 select I[n] else 9603*Self(n-1)-9603*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 20 2015
  • Mathematica
    LinearRecurrence[{9603, -9603, 1}, {8, 78408, 752875208}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
  • PARI
    Vec(-8*x*(x^2+198*x+1)/((x-1)*(x^2-9602*x+1)) + O(x^20))
    

Formula

G.f.: -8*x*(x^2+198*x+1) / ((x-1)*(x^2-9602*x+1)).

A259165 Positive heptagonal numbers (A000566) that are pentagonal numbers (A000326) divided by 2.

Original entry on oeis.org

540, 125482435, 29152330292086, 6772727677992549813, 1573453639577432827392256, 365547896447135621647431177175, 84924818396817988252797073116286650, 19729903659220000770419185998874515952681, 4583690677832384200588508141377728222042497188
Offset: 1

Views

Author

Colin Barker, Jun 19 2015

Keywords

Comments

Intersection of A000566 and A193866 (even pentagonal numbers divided by 2). - Michel Marcus, Jun 20 2015

Examples

			540 is in the sequence because 540 is the 15th heptagonal number, and 2*540 is the 27th pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{232323, -232323, 1}, {540, 125482435, 29152330292086}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
  • PARI
    Vec(-x*(x^2+28015*x+540)/((x-1)*(x^2-232322*x+1)) + O(x^20))

Formula

G.f.: -x*(x^2+28015*x+540) / ((x-1)*(x^2-232322*x+1)).
Showing 1-2 of 2 results.