cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259163 Positive heptagonal numbers (A000566) that are triangular numbers (A000217) divided by 2.

Original entry on oeis.org

18, 189, 37727235, 393298308, 78448579122960, 817809556618215, 163122994382238923193, 1700522115268371779430, 339191755844562643229618814, 3536001066647854270462804353, 705302447816298343956844397692383, 7352626249945315029422809413582264
Offset: 1

Views

Author

Colin Barker, Jun 19 2015

Keywords

Comments

Intersection of A000566 and A074378 (even triangular numbers divided by 2). - Michel Marcus, Jun 20 2015

Examples

			18 is in the sequence because 18 is the 3rd heptagonal number, and 2*18 is the 8th triangular number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 2079362, -2079362, -1, 1}, {18, 189, 37727235, 393298308, 78448579122960}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
  • PARI
    Vec(-9*x*(2*x^4+19*x^3+33170*x^2+19*x+2)/((x-1)*(x^2-1442*x+1)*(x^2+1442*x+1)) + O(x^20))

Formula

G.f.: -9*x*(2*x^4+19*x^3+33170*x^2+19*x+2) / ((x-1)*(x^2-1442*x+1)*(x^2+1442*x+1)).

A259165 Positive heptagonal numbers (A000566) that are pentagonal numbers (A000326) divided by 2.

Original entry on oeis.org

540, 125482435, 29152330292086, 6772727677992549813, 1573453639577432827392256, 365547896447135621647431177175, 84924818396817988252797073116286650, 19729903659220000770419185998874515952681, 4583690677832384200588508141377728222042497188
Offset: 1

Views

Author

Colin Barker, Jun 19 2015

Keywords

Comments

Intersection of A000566 and A193866 (even pentagonal numbers divided by 2). - Michel Marcus, Jun 20 2015

Examples

			540 is in the sequence because 540 is the 15th heptagonal number, and 2*540 is the 27th pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{232323, -232323, 1}, {540, 125482435, 29152330292086}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
  • PARI
    Vec(-x*(x^2+28015*x+540)/((x-1)*(x^2-232322*x+1)) + O(x^20))

Formula

G.f.: -x*(x^2+28015*x+540) / ((x-1)*(x^2-232322*x+1)).
Showing 1-2 of 2 results.