A259167
Positive octagonal numbers (A000567) that are squares (A000290) divided by 2.
Original entry on oeis.org
8, 78408, 752875208, 7229107670408, 69413891098384008, 666512175097575576008, 6399849835873029582446408, 61451357457540654953074835208, 590055927907455532986394985222408, 5665716958316030570194709695030728008, 54402213643694597627554069505290065112008
Offset: 1
8 is in the sequence because 8 is the 2nd octagonal number, and 2*8 is the 4th square.
-
I:=[8, 78408, 752875208]; [n le 3 select I[n] else 9603*Self(n-1)-9603*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 20 2015
-
LinearRecurrence[{9603, -9603, 1}, {8, 78408, 752875208}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-8*x*(x^2+198*x+1)/((x-1)*(x^2-9602*x+1)) + O(x^20))
A259158
Positive triangular numbers (A000217) that are heptagonal numbers (A000566) divided by 2.
Original entry on oeis.org
171, 355817826, 739874066553765, 1538466018777014327028, 3199027777735470191011289295, 6651936797966044301302839516949686, 13831784604089070782667939513452521937961, 28761287297921206463992005998270360082445758120
Offset: 1
171 is in the sequence because 171 is the 18th triangular number, and 2*171 is the 12th heptagonal number.
-
LinearRecurrence[{2079363, -2079363, 1}, {171, 355817826, 739874066553765}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-171*x*(1443*x+1) / ((x-1)*(x^2-2079362*x+1)) + O(x^20))
A259157
Positive triangular numbers (A000217) that are hexagonal numbers (A000384) divided by 2.
Original entry on oeis.org
3, 3570, 4119885, 4754343828, 5486508657735, 6331426236682470, 7306460390622912753, 8431648959352604634600, 9730115592632515125415755, 11228544962248963102125146778, 12957731156319710787337293966165, 14953210525847983999624135111807740
Offset: 1
3 is in the sequence because 3 is the 2nd triangular number, and 2*3 is the 2nd hexagonal number.
-
LinearRecurrence[{1155, -1155, 1}, {3, 3570, 4119885}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-3*x*(35*x+1)/((x-1)*(x^2-1154*x+1)) + O(x^20))
A259159
Positive squares (A000290) that are heptagonal numbers (A000566) divided by 2.
Original entry on oeis.org
9, 938961, 97353360225, 10093791093915321, 1046544448101974957529, 108507821458015176452612289, 11250307943363385076857772396401, 1166454428075294670080752381151042025, 120940328000452394039949183305644566845481
Offset: 1
9 is in the sequence because 9 is the 3rd square, and 2*9 is the 3rd heptagonal number.
-
LinearRecurrence[{103683, -103683, 1},{9, 938961, 97353360225}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-9*x*(x^2+646*x+1)/((x-1)*(x^2-103682*x+1)) + O(x^20))
A259160
Positive squares (A000290) that are octagonal numbers (A000567) divided by 2.
Original entry on oeis.org
4, 39204, 376437604, 3614553835204, 34706945549192004, 333256087548787788004, 3199924917936514791223204, 30725678728770327476537417604, 295027963953727766493197492611204, 2832858479158015285097354847515364004, 27201106821847298813777034752645032556004
Offset: 1
4 is in the sequence because 4 is the 2nd square, and 2*4 is the 2nd octagonal number.
-
LinearRecurrence[{9603, -9603, 1}, {4, 39204, 376437604}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-4*x*(x^2+198*x+1)/((x-1)*(x^2-9602*x+1)) + O(x^20))
A259161
Positive pentagonal numbers (A000326) that are triangular numbers (A000217) divided by 2.
Original entry on oeis.org
5, 48510, 465793515, 4472549283020, 42945417749765025, 412361896760694487530, 3959498889750770719498535, 38019107927025003687930446040, 365059470355795195660737423378045, 3505300996337237541709397051345542550, 33657899801770684519698434826282476187555
Offset: 1
5 is in the sequence because 5 is the 2nd pentagonal number, and 2*5 is the 4th triangular number.
-
LinearRecurrence[{9603, -9603, 1}, {5, 48510, 465793515}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-5*x*(99*x+1)/((x-1)*(x^2-9602*x+1)) + O(x^20))
A259162
Positive hexagonal numbers (A000384) that are pentagonal numbers (A000326) divided by 2.
Original entry on oeis.org
6, 58311, 559902916, 5376187741821, 51622154137063026, 495675918647891434531, 4759480119234899417304336, 45700527609217585557064800441, 438816461344227137284036796530846, 4213515616126741362983735763224383551, 40458176507232509223142693514443734326556
Offset: 1
6 is in the sequence because 6 is the 2nd hexagonal number, and 2*6 is the 3rd pentagonal number.
-
LinearRecurrence[{9603, -9603, 1}, {6, 58311, 559902916}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-x*(x^2+693*x+6)/((x-1)*(x^2-9602*x+1)) + O(x^20))
A259163
Positive heptagonal numbers (A000566) that are triangular numbers (A000217) divided by 2.
Original entry on oeis.org
18, 189, 37727235, 393298308, 78448579122960, 817809556618215, 163122994382238923193, 1700522115268371779430, 339191755844562643229618814, 3536001066647854270462804353, 705302447816298343956844397692383, 7352626249945315029422809413582264
Offset: 1
18 is in the sequence because 18 is the 3rd heptagonal number, and 2*18 is the 8th triangular number.
-
LinearRecurrence[{1, 2079362, -2079362, -1, 1}, {18, 189, 37727235, 393298308, 78448579122960}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-9*x*(2*x^4+19*x^3+33170*x^2+19*x+2)/((x-1)*(x^2-1442*x+1)*(x^2+1442*x+1)) + O(x^20))
A259164
Positive heptagonal numbers (A000566) that are squares (A000290) divided by 2.
Original entry on oeis.org
18, 1877922, 194706720450, 20187582187830642, 2093088896203949915058, 217015642916030352905224578, 22500615886726770153715544792802, 2332908856150589340161504762302084050, 241880656000904788079898366611289133690962
Offset: 1
18 is in the sequence because 18 is the 3rd heptagonal number, and 2*18 is the 6th square.
-
LinearRecurrence[{103683, -103683, 1}, {18, 1877922, 194706720450}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-18*x*(x^2+646*x+1)/((x-1)*(x^2-103682*x+1)) + O(x^20))
A259165
Positive heptagonal numbers (A000566) that are pentagonal numbers (A000326) divided by 2.
Original entry on oeis.org
540, 125482435, 29152330292086, 6772727677992549813, 1573453639577432827392256, 365547896447135621647431177175, 84924818396817988252797073116286650, 19729903659220000770419185998874515952681, 4583690677832384200588508141377728222042497188
Offset: 1
540 is in the sequence because 540 is the 15th heptagonal number, and 2*540 is the 27th pentagonal number.
-
LinearRecurrence[{232323, -232323, 1}, {540, 125482435, 29152330292086}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
-
Vec(-x*(x^2+28015*x+540)/((x-1)*(x^2-232322*x+1)) + O(x^20))
Showing 1-10 of 11 results.
Comments