A256495 Palindromes i such that 2*i^2 is a palindrome.
0, 1, 2, 11, 101, 111, 1001, 1111, 10001, 10101, 11011, 100001, 101101, 110011, 1000001, 1001001, 1010101, 1100011, 10000001, 10011001, 10100101, 11000011, 100000001, 100010001, 100101001, 101000101, 110000011, 1000000001, 1000110001, 1001001001, 1010000101
Offset: 1
Examples
Palindrome 11 is in the sequence because 2*11^2 = 242, a palindrome.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..91
Crossrefs
Cf. A256437.
Programs
-
Maple
dmax:= 11: # to get all terms with at most dmax digits revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(10^(i-1)*L[-i],i=1..nops(L)); end proc: filter:= proc(n) local L; L:= convert(2*n^2,base,10); L = ListTools:-Reverse(L) end proc: A:= {}: for d from 1 to dmax do if d::even then A:= A union select(filter, {seq(10^(d/2)*x + revdigs(x), x=10^(d/2-1)..10^(d/2)-1)}) else m:= (d-1)/2; A:= A union select(filter, {seq(seq(10^(m+1)*x + y*10^m + revdigs(x), y=0..9),x=10^(m-1)..10^m-1)}) fi od: A; # if using Maple 11 or earlier, uncomment the next line # sort(convert(A,list)); # Robert Israel, Apr 13 2015
-
Mathematica
palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Select[ Range@ 10000000, palQ@ # && palQ[#^2 + FromDigits[Reverse@ IntegerDigits@ #]^2] &] (* Michael De Vlieger, Mar 31 2015 *) Select[Range[0,10101*10^5],AllTrue[{#,2#^2},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 26 2020 *)
-
PARI
ispal(n) = my(d = digits(n)); Vecrev(d) == d; lista(nn) = {for (n=0, nn, if (ispal(n) && ispal(2*n^2), print1(n, ", ")););} \\ Michel Marcus, Mar 31 2015
Extensions
a(19)-a(22) from Michel Marcus, Mar 31 2015
a(23)-a(31) from Lars Blomberg, Apr 13 2015
Comments