A202386 Nonpalindromic numbers m such that the difference between the square of m and the square of the reversal of m is itself a perfect square. Numbers ending in 0 are excluded.
65, 5625, 6565, 50721, 65065, 71555, 75515, 84295, 541063, 557931, 650065, 650606, 656565, 699796, 809325, 827372, 934065, 2855182, 4637061, 4854634, 5791775, 5883141, 5951693, 6129084, 6500065, 6731076, 6752626, 6791774, 7768827, 8084505, 9349065
Offset: 1
Examples
5625 belongs to this sequence because 5625^2 - 5265^2 = 1980^2.
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1996, p. 147.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..200
- Sheng Jiang and Rui-Chen Chen, Digits reversed Pythagorean triples, International Journal of Mathematical Education in Science and Technology, volume 29, number 5, 1998, pages 689-696, see type acca-DRPT.
Crossrefs
Programs
-
Mathematica
lst = {}; Do[a = n^2; b = FromDigits[Reverse[IntegerDigits[n]]]^2; If[MatchQ[Sqrt[a - b], _Integer] && ! a == b, AppendTo[lst, n]], {n, 85000}]; Select[lst, ! Mod[#, 10] == 0 &]
-
PARI
isok(m) = my(r=fromdigits(Vecrev(digits(m)))); (r != m) && (m % 10) && issquare(m^2 - r^2); \\ Michel Marcus, Feb 27 2020
Extensions
Name clarified by Michel Marcus, Feb 27 2020
Comments