cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Joseph L. Pe

Joseph L. Pe's wiki page.

Joseph L. Pe has authored 593 sequences. Here are the ten most recent ones:

A333079 The largest nontrivial divisor of n equals the sum of the other nontrivial divisors of n.

Original entry on oeis.org

345, 1645, 6489, 8041, 23881, 88473, 115957, 342637, 3256261, 4114285, 4646101, 5054221, 13384681, 17897737, 20901553, 23807821, 42081409, 64580041, 65380921, 70366153, 82175857, 110344621, 137331565, 164109901, 286078081, 331957897, 366611617, 367891717, 489645157
Offset: 1

Author

Joseph L. Pe, Mar 07 2020

Keywords

Comments

A divisor of n other than 1 and n is called a nontrivial divisor of n.
In general, if p, p+k, and q = (p^2+(2+k)*p+k)/(k-1) are 3 primes and p < p+k < q, then p(p+k)q is a term. In particular, if p, p+2, and p^2+4*p+2 are 3 primes, then p(p+2)(p^2+4*p+2) is a term. - Giovanni Resta, Mar 08 2020
Each term in this sequence has at least eight divisors. - Bernard Schott, Mar 09 2020

Examples

			The nontrivial divisors of 345 are 3, 5, 15, 23, 69, 115, the largest of which, 115, is equal to the sum of the other nontrivial divisors 3, 5, 15, 23, 69.
		

Crossrefs

Cf. A032742.

Programs

  • Mathematica
    Select[Range[10^5], 2 # / FactorInteger[#][[1, 1]] == DivisorSigma[1, #] - # - 1 &] (* Giovanni Resta, Mar 07 2020 *)
    lndQ[n_]:=With[{c=TakeDrop[Rest[Most[Divisors[n]]],-1]},c[[1,1]]==Total[c[[2]]]]; Select[Range[ 51*10^5],lndQ]//Quiet (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Jan 16 2024 *)
  • PARI
    for(k=2,5*10^7,my(d=divisors(k)); if(#d>2&&d[#d-1]==vecsum(d[2..#d-2]), print1(k,", "))) \\ Hugo Pfoertner, Mar 07 2020

Extensions

More terms from Giovanni Resta, Mar 07 2020

A238161 Greatest common divisor of the prime factors of n, each increased by 1.

Original entry on oeis.org

3, 4, 3, 6, 1, 8, 3, 4, 3, 12, 1, 14, 1, 2, 3, 18, 1, 20, 3, 4, 3, 24, 1, 6, 1, 4, 1, 30, 1, 32, 3, 4, 3, 2, 1, 38, 1, 2, 3, 42, 1, 44, 3, 2, 3, 48, 1, 8, 3, 2, 1, 54, 1, 6, 1, 4, 3, 60, 1, 62, 1, 4, 3, 2, 1, 68, 3, 4, 1, 72, 1, 74, 1, 2, 1, 4, 1, 80, 3, 4, 3, 84, 1, 6, 1, 2, 3, 90, 1, 2, 3, 4, 3, 2, 1, 98, 1, 4, 3
Offset: 2

Author

Joseph L. Pe, Feb 18 2014

Keywords

Examples

			10 has prime factors 2 and 5, which become 3 and 6 when respectively increased by 1, and gcd(3, 6) = 3. Therefore, a(10) = 3.
		

Programs

  • Mathematica
    Table[Apply[GCD, (Transpose[FactorInteger[n]][[1]] + 1)], {n, 2, 100}]

A238162 Least common multiple of the prime factors of n, each increased by 1.

Original entry on oeis.org

3, 4, 3, 6, 12, 8, 3, 4, 6, 12, 12, 14, 24, 12, 3, 18, 12, 20, 6, 8, 12, 24, 12, 6, 42, 4, 24, 30, 12, 32, 3, 12, 18, 24, 12, 38, 60, 28, 6, 42, 24, 44, 12, 12, 24, 48, 12, 8, 6, 36, 42, 54, 12, 12, 24, 20, 30, 60, 12, 62, 96, 8, 3, 42, 12, 68, 18, 24, 24, 72, 12, 74, 114, 12, 60, 24, 84, 80, 6, 4, 42, 84, 24, 18, 132, 60, 12, 90, 12, 56, 24, 32, 48, 60, 12, 98, 24, 12, 6
Offset: 2

Author

Joseph L. Pe, Feb 18 2014

Keywords

Comments

If n is prime, then a(n) = n + 1. - Wesley Ivan Hurt, Apr 05 2014
If n is a composite squarefree number and a(n) divides n+1, then n is a Lucas-Carmichael number (A006972). - Daniel Suteu, Oct 02 2022

Examples

			The prime factors of 6 are 2 and 3, which become 3 and 4 when respectively increased by 1, and lcm(3, 4) = 12. Therefore, a(6) = 12.
		

Crossrefs

Cf. A006972.

Programs

  • PARI
    a(n) = my(f=factor(n)); lcm(vector(#f~, k, f[k, 1]+1)); \\ Daniel Suteu, Oct 02 2022

A237282 The sum of the totatives of n is a perfect cube.

Original entry on oeis.org

1, 2, 9, 16, 36, 128, 200, 243, 288, 289, 450, 972, 1024, 1156, 1600, 2304, 3600, 6561, 7776, 8192, 8214, 8664, 9126, 9248, 10584, 12150, 12800, 14450, 15987, 18432, 20808, 24843, 25000, 26244, 27075, 28800, 30250, 33075, 51005, 56250, 62208, 63001, 63948
Offset: 1

Author

Joseph L. Pe, Feb 05 2014

Keywords

Comments

A positive integer <= n that is relatively prime to n is called a totative of n.

Examples

			The sum of totatives of 9 is 1 + 2 + 4 + 5 + 7 + 8 = 27 = 3^3; therefore, 9 is a term of the sequence.
		

Crossrefs

Cf. A023896.

Programs

  • Mathematica
    g[n_] := Module[{r, i},
        r = {};
        For[i = 1, i <= n, i++,
          If[GCD[n, i] == 1,
            r = Append[r, i]]];
        Apply[Plus, r]];
    Select[Range[2*10^3], IntegerQ[g[#]^(1/3)] &]
  • PARI
    is(n)=ispower(n*eulerphi(n)/2, 3) || n==1 \\ Charles R Greathouse IV, Sep 21 2016

Extensions

More terms from Alois P. Heinz, Feb 05 2014

A236693 Numbers k such that 2^sigma(k) == 1 (mod k).

Original entry on oeis.org

1, 3, 15, 35, 51, 65, 105, 119, 195, 255, 315, 323, 357, 377, 455, 459, 585, 595, 663, 969, 1045, 1071, 1105, 1131, 1189, 1365, 1455, 1469, 1485, 1547, 1615, 1785, 1799, 1885, 1887, 1911, 2261, 2295, 2385, 2639, 2795, 2907, 3135, 3145, 3185, 3213, 3315, 3339
Offset: 1

Author

Joseph L. Pe, Jan 30 2014

Keywords

Comments

This sequence is infinite since A051179(n) is a term. - Jinyuan Wang, Mar 13 2020

Examples

			2^sigma(15) = 2^24 = 16777216 is congruent to 1 (mod 15), so 15 is a term of the sequence.
		

Crossrefs

Supersequence of A015715.

Programs

  • Mathematica
    l = {1};
    For[i = 1, i <= 10^4, i++,
        If[Mod[2^DivisorSigma[1, i], i] == 1, l = Append[l, i]]];
    l
  • PARI
    s=[1]; for(n=1, 10000, if(2^sigma(n)%n==1, s=concat(s, n))); s \\ Colin Barker, Jan 30 2014
    
  • PARI
    isok(n) = Mod(2, n)^sigma(n)==1; \\ Altug Alkan, Sep 19 2017

Extensions

a(1) = 1 added by Amiram Eldar, Sep 19 2017

A235989 sigma(n) is an additive inverse of n modulo phi(n).

Original entry on oeis.org

1, 2, 6, 10, 12, 28, 76, 120, 312, 588, 672, 888, 1060, 1264, 1656, 14496, 17900, 22896, 44676, 71712, 77688, 95040, 183600, 233088, 327424, 411264, 425376, 446016, 453258, 655776, 1041120, 1253304, 2708640, 5241856, 5468352, 8676576, 9738912, 12536640, 59489184
Offset: 1

Author

Joseph L. Pe, Jan 27 2014

Keywords

Comments

sigma(10) = 18 is congruent to 2 = -10 mod 4 and phi(10) = 4; so 10 is a term of the sequence.
If p = 5*2^k-1 is a prime, as it happens for k = 2, 4, 8, 10, 12, 14,... (A001770), then n = 2^k*p is in the sequence, since n+sigma(n) = 6*phi(n). - Giovanni Resta, Jan 27 2014

Crossrefs

Cf. A001770.

Programs

  • Mathematica
    t = {1}; For[i = 1, i <= 10^6, i++; If[Mod[DivisorSigma[1, i] + i, EulerPhi[i]] == 0, AppendTo[t, i]]]; t
  • PARI
    isok(n) = !((sigma(n) + n) % eulerphi(n)); \\ Michel Marcus, Jan 27 2014

Extensions

More terms from Michel Marcus, Jan 27 2014

A236388 Primes in order of first appearance among the prime factors of p+1 where p is a prime.

Original entry on oeis.org

3, 2, 7, 5, 19, 11, 31, 17, 37, 13, 23, 79, 41, 29, 97, 53, 43, 139, 47, 71, 157, 83, 59, 199, 67, 211, 229, 61, 131, 271, 137, 307, 103, 107, 109, 331, 337, 113, 173, 367, 379, 127, 197, 439, 227, 163, 499, 101, 73, 263, 547, 281, 577, 293, 601, 607
Offset: 1

Author

Joseph L. Pe, Jan 24 2014

Keywords

Comments

The first p+1 (p prime) is 2+1=3, so 3 is the first term of the sequence. The next is 3+1=4=2*2, and the prime 2 appears next, so it is the second term of the sequence. The next p+1 = 5+1 = 6 gives no new prime factor; neither do 7+1 = 8 and 11+1 = 12. 13+1 = 14 = 2*7 gives the new prime factor 7, so 7 is the third term of the sequence.
If "p+1" is changed to "p-1" we get A112037. - N. J. A. Sloane, Jan 24 2014

Crossrefs

Cf. A112037.

Programs

  • Mathematica
    DeleteDuplicates[ First /@ Flatten[FactorInteger[1 + Prime@Range@200], 1]] (* Giovanni Resta, Jan 24 2014 *)

A236387 Numbers n such that sigma(n) is an oblong number.

Original entry on oeis.org

5, 6, 11, 19, 20, 26, 28, 29, 30, 39, 40, 41, 46, 51, 55, 58, 71, 86, 89, 99, 104, 109, 114, 116, 117, 125, 131, 135, 158, 177, 181, 201, 202, 203, 209, 216, 226, 236, 239, 245, 271, 278, 306, 336, 340, 352, 377, 379, 398, 410, 411, 419, 428, 442, 447, 461
Offset: 1

Author

Joseph L. Pe, Jan 24 2014

Keywords

Comments

An oblong number (A002378) is of the form k(k+1) where k is a natural number.
The subsequence of prime terms is A002327 (primes of form n^2 - n - 1). - Michel Marcus, Jan 09 2015

Examples

			sigma(40) = 90 = 9*10, an oblong number; so 40 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], IntegerQ@ Sqrt[1+4*DivisorSigma[1, #]] &] (* Giovanni Resta, Jan 24 2014 *)

Extensions

a(12)-a(56) from Giovanni Resta, Jan 24 2014

A236386 Numbers m such that phi(m) is an oblong number.

Original entry on oeis.org

3, 4, 6, 7, 9, 13, 14, 18, 21, 25, 26, 28, 31, 33, 36, 42, 43, 44, 49, 50, 62, 66, 73, 86, 87, 91, 95, 98, 111, 116, 117, 121, 135, 146, 148, 152, 157, 161, 169, 174, 182, 190, 201, 207, 211, 216, 222, 228, 234, 237, 241, 242, 252, 268, 270, 287, 289, 305
Offset: 1

Author

Joseph L. Pe, Jan 24 2014

Keywords

Comments

An oblong number (A002378) is of the form k*(k+1) where k is a natural number.
From Bernard Schott, Feb 27 2023: (Start)
Subsequence of primes is A002383 because in this case phi(k^2+k+1) = k*(k+1).
Subsequence of oblong numbers is A359847 where k and phi(k) are both oblong numbers. (End)

Examples

			phi(13) = 12 = 3*4, an oblong number; so 13 is a term of the sequence.
		

Crossrefs

Similar, but where phi(m) is: A039770 (square), A039771 (cube), A078164 (biquadrate), A096503 (repdigit), A117296 (palindrome), A360944 (triangular).

Programs

  • Maple
    filter := m -> issqr(1 + 4*phi(m)) : select(filter, [$(1 .. 700)]); # Bernard Schott, Feb 26 2023
  • Mathematica
    Select[Range[500], IntegerQ@Sqrt[1 + 4*EulerPhi[#]] &] (* Giovanni Resta, Jan 24 2014 *)
  • PARI
    isok(m) = my(t=eulerphi(m)); !(t%2) && ispolygonal(t/2, 3); \\ Michel Marcus, Feb 27 2023
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    from sympy import totient
    def A236386_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:is_square((totient(n)<<2)+1), count(max(1,startvalue)))
    A236386_list = list(islice(A236386_gen(),20)) # Chai Wah Wu, Feb 28 2023

Extensions

a(16)-a(58) from Giovanni Resta, Jan 24 2014

A171183 Numbers n such that sigmawt(n) = sigmawt(n+1), where sigmawt(n) is the sum of the divisors of n weighted by divisor multiplicity in n.

Original entry on oeis.org

14, 957, 1334, 1634, 2402, 2685, 20145, 33998, 42818, 74918, 79826, 79833, 84134, 111506, 122073, 138237, 147454, 166934, 201597, 274533, 289454, 347738, 383594, 416577, 440013, 544334, 605985, 649154, 655005, 1060802, 1642154, 1674513
Offset: 1

Author

Joseph L. Pe, Dec 05 2009

Keywords

Crossrefs

See A168512 for definition of divisor multiplicity.

Programs

  • Mathematica
    divmult[d_, n_] := Module[{output, i}, If[d == 1, output = 1, If[d == n, output = 1, i = 0; While[Mod[n, d^(i + 1)] == 0, i = i + 1]; output = i]]; output]; dmt[n_] := Module[{divs, l}, divs = Divisors[n]; l = Length[divs]; Sum[divmult[divs[[i]], n]*divs[[i]], {i, 1, l}]]; l = {}; Do[If[dmt[i] == dmt[i + 1], l = Append[l, i]], {i, 1, 10^6}]; l

Extensions

Extended by Ray Chandler, Dec 08 2009