A327836 Least k > 0 such that n^k == 1 (mod (n+1)^(n+1)).
1, 18, 64, 1250, 3888, 235298, 2097152, 86093442, 250000000, 51874849202, 743008370688, 46596170244962, 396857386627072, 58385852050781250, 1152921504606846976, 97322383751333736962, 273238944967337066496, 208254700595822483065682, 5242880000000000000000000, 556436858893903097274392802
Offset: 1
Keywords
Examples
For n=2: 2^18-1 has the factor 27=3^3. For n=3: 3^64-1 has the factor 256=2^8=4^4.
Programs
-
Maple
a:= n-> (t-> numtheory[order](n, t^t))(n+1): seq(a(n), n=1..20); # Alois P. Heinz, Sep 27 2019
-
Mathematica
a[n_] := MultiplicativeOrder[n, (n+1)^(n+1)]; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Feb 02 2025, after PARI code *)
-
PARI
a(n) = znorder(Mod(n, (n+1)^(n+1))); \\ Daniel Suteu, Sep 27 2019
Extensions
More terms from Daniel Suteu, Sep 27 2019
Comments