cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A202386 Nonpalindromic numbers m such that the difference between the square of m and the square of the reversal of m is itself a perfect square. Numbers ending in 0 are excluded.

Original entry on oeis.org

65, 5625, 6565, 50721, 65065, 71555, 75515, 84295, 541063, 557931, 650065, 650606, 656565, 699796, 809325, 827372, 934065, 2855182, 4637061, 4854634, 5791775, 5883141, 5951693, 6129084, 6500065, 6731076, 6752626, 6791774, 7768827, 8084505, 9349065
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 18 2011

Keywords

Comments

This sequence is infinite because 65*10^k + 65 is a term for all k > 1.

Examples

			5625 belongs to this sequence because 5625^2 - 5265^2 = 1980^2.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1996, p. 147.

Crossrefs

Cf. A000290 (squares), A004086 (digit reversal).
Cf. A256515 (with abs), A068536 (with addition).

Programs

  • Mathematica
    lst = {}; Do[a = n^2; b = FromDigits[Reverse[IntegerDigits[n]]]^2; If[MatchQ[Sqrt[a - b], _Integer] && ! a == b, AppendTo[lst, n]], {n, 85000}]; Select[lst, ! Mod[#, 10] == 0 &]
  • PARI
    isok(m) = my(r=fromdigits(Vecrev(digits(m)))); (r != m) && (m % 10) && issquare(m^2 - r^2); \\ Michel Marcus, Feb 27 2020

Extensions

Name clarified by Michel Marcus, Feb 27 2020

A256515 Nonpalindromic positive integers k such that the absolute value of k^2 - reverse(k)^2 is a square.

Original entry on oeis.org

56, 65, 5265, 5625, 5656, 6565, 12705, 44370, 50721, 51557, 55517, 56056, 59248, 65065, 71555, 75515, 84295, 139755, 273728, 360145, 481610, 523908, 541063, 557931, 560056, 560439, 565656, 606056, 621770, 650065, 650606, 656565, 697996, 699796, 809325, 827372
Offset: 1

Views

Author

Bui Quang Tuan, Apr 01 2015

Keywords

Examples

			The nonpalindromic number 5265 is a term because abs(5265^2 - 5625^2) = 1980^2.
		

Crossrefs

Cf. A004086 (digit reversal), A202386, A068536.

Programs

  • Magma
    [n: n in [0..10^6] | Intseq(n) ne Reverse(Intseq(n)) and IsSquare(s) where s is Abs(n^2-Seqint(Reverse(Intseq(n)))^2)]; // Bruno Berselli, Apr 01 2015
    
  • Mathematica
    Select[Range[200000], ! PalindromeQ@ # && IntegerQ@ Sqrt@ Abs[#^2 - IntegerReverse[#]^2] &] (* Michael De Vlieger, Mar 02 2022 *)
  • Python
    from sympy.ntheory.primetest import is_square
    def R(n): return int(str(n)[::-1])
    def ok(n): Rn = R(n); return n != Rn and is_square(abs(n**2 - Rn**2))
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Mar 02 2022

A113798 Numbers k such that k^2 plus the reverse of k is a square.

Original entry on oeis.org

117, 119817, 13101687, 119819817, 13101801687, 119819819817, 11983101689817, 13101801801687, 119819819819817
Offset: 1

Views

Author

Giovanni Resta, Jan 21 2006

Keywords

Comments

a(10) > 1.36*10^14. The sequence contains two infinite sets, 117*1000^k + 2817*(1000^k - 1)/999 and 13101687*1000^k + 114687*(1000^k - 1)/999, for k >= 0. Terms of both sets satisfy the equation rev(x) = 6*x + 9, and thus x^2 + rev(x) = (x+3)^2. - Giovanni Resta, Aug 26 2019

Examples

			117^2 + 711 = 120^2, thus 117 is a term.
		

Crossrefs

Extensions

a(5)-a(6) from Giovanni Resta, May 10 2017
a(7)-a(9) from Giovanni Resta, Aug 26 2019

A289140 Positive numbers k such that rev(k)^2 + rev(k^2) is a square, where rev(n) = A004086(n) is the digital reverse of n.

Original entry on oeis.org

998586, 3632658, 9985860, 36326580, 74471091, 99664458, 99858600, 363265800, 634826115, 743193501, 744710910, 756335085, 759317343, 996644580, 998586000, 3632658000, 6348261150, 7177621788, 7431935010, 7447109100, 7563350850, 7593173430, 9966445800
Offset: 1

Views

Author

Giovanni Resta, Jun 26 2017

Keywords

Comments

Every term must be a multiple of 3.

Examples

			998586 is a term since rev(998586^2) + 685899^2 = 1079100^2.
		

Crossrefs

Programs

  • Mathematica
    rev[n_] := FromDigits@ Reverse@ IntegerDigits@ n; Parallelize@ Select[3 Range[4 10^6], IntegerQ@ Sqrt[rev[#^2] + rev[#]^2] &]
  • PARI
    isok(n) = issquare(fromdigits(Vecrev(digits(n)))^2 + fromdigits(Vecrev(digits(n^2)))); \\ Michel Marcus, Jun 29 2017
Showing 1-4 of 4 results.