cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ron Knott

Ron Knott's wiki page.

Ron Knott has authored 19 sequences. Here are the ten most recent ones:

A295089 a(n) = 3*n^2 + n + 3.

Original entry on oeis.org

3, 7, 17, 33, 55, 83, 117, 157, 203, 255, 313, 377, 447, 523, 605, 693, 787, 887, 993, 1105, 1223, 1347, 1477, 1613, 1755, 1903, 2057, 2217, 2383, 2555, 2733, 2917, 3107, 3303, 3505, 3713, 3927, 4147, 4373, 4605, 4843, 5087, 5337, 5593, 5855, 6123, 6397, 6677, 6963, 7255, 7553, 7857
Offset: 0

Author

Ron Knott, Nov 14 2017

Keywords

Comments

Numbers represented as the palindrome 313 in number base n including base n=1, base 2 (binary) and base 3 with 'illegal' digit 3: 313_1=7, 313_2=17, 313_3=33, ... 313_9=255, 313_10=313, ...

Examples

			313 in base 7 is 3*7^2 + 1*7 + 3 = 157.
		

Crossrefs

Programs

  • Mathematica
    Array[3 #^2 + # + 3 &, 52, 0] (* Michael De Vlieger, Nov 15 2017 *)
    LinearRecurrence[{3, -3, 1}, {3, 7, 17}, 52] (* or *)
    CoefficientList[Series[-(5 x^2 - 2 x + 3)/(x - 1)^3, {x, 0, 51}], x] (* Robert G. Wilson v, Nov 29 2017 *)
  • PARI
    a(n) = 3*n^2 + n + 3; \\ Michel Marcus, Dec 15 2017

Formula

a(n) = A131649(n+3) + 1, n >= 2 (conjectured).
a(n) = A056108(n) + 2 = A049451(n) + 3 = A144391(n) + 4.
From Elmo R. Oliveira, Sep 02 2025: (Start)
G.f.: (3 - 2*x + 5*x^2)/(1-x)^3.
E.g.f.: (3 + 4*x + 3*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)

A277534 Least hypotenuse, c, of a Primitive Pythagorean Triangle (PPT) such that the difference between it, c, and its greater leg, b, is n; or 0 if no such PPT exists.

Original entry on oeis.org

5, 17, 0, 0, 65, 0, 0, 29, 65, 185, 0, 0, 169, 0, 0, 0, 221, 333, 0, 0, 273, 0, 0, 0, 157, 481, 0, 0, 1189, 0, 0, 641, 1353, 629, 0, 0, 1517, 0, 0, 425, 1681, 777, 0, 0, 1845, 0, 0, 0, 205, 925, 0, 0, 2173, 0, 0, 0, 2337, 1073, 0, 0, 2501, 0, 0, 0, 2665, 1221, 0, 0, 2829, 0, 0, 1405, 2993, 1369, 0
Offset: 1

Author

Ron Knott and Robert G. Wilson v, Jun 05 2014

Keywords

Comments

n = 1, 2, 5, 8, 9, 10, 13, 17, 18, 21, 25, ..., satisfies the first criterion;
a(n) = 0 for n = 3, 4, 6, 7, 11, 12, 14, 15, 16, 19, 20, 22, 23, 24, ..., ;
a(n) = 0 for 5832 of the first 10000 terms;
a(8n) = 0 for 832 of the first 10000 terms;
a(8n) = 0 for n: 2, 3, 6, 7, 8, 10, 11, 12, 14, 15, 18, 19, 22, 23, 24, ..., ;
a(8n+1) > 0;
a(8n+2) > 0; a linear 2nd-order recurrence: a(n) = 2*a(n-1) - a(n-2) with a(1) = 185 & a(2) = 333;
a(8n+3) = 0;
a(8n+4) = 0;
a(8n+5) > 0;
a(8n+6) = 0;
a(8n+7) = 0;
Prime terms: 5, 17, 29, 157, 641, 3821, 4201, 17749, 21601, 31981, 38273, 44789, 61129, 66173, 72161, 100673, 108541, 114553, 121421, 142973, 165541, 173777, 182141, 204733, 213881, 225889, 235493, 281837, ..., .

Examples

			a(1) is 5 since the PPT (3,4,5) satisfies the first stated criterion; a(2) is 17 since the PPT (8,15,17) satisfies the first stated criterion; a(3) = 0 since there exists no PPT that satisfies the stated criteria; etc.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := FindInstance[ a^2 + b^2 == c^2 && Mod[c, 4] == 1 && 0 < a < b < c && c - b == n, {a, b, c}, Integers][[1, 3, 2, 1, 1, 3]] + 1 /. 1 + {}[[1, 3, 2, 1, 1, 3]] -> 0; f[1] = 5; Array[f, 75]

A226976 Fibonacci(n)^3 + Fibonacci(n+2)^3.

Original entry on oeis.org

1, 9, 28, 133, 539, 2322, 9773, 41501, 175636, 744273, 3152359, 13354306, 56568617, 239630337, 1015087436, 4299984173, 18215017507, 77160064914, 326855259829, 1384581132277, 5865179743556, 24845300179929, 105246380344463, 445830821750018, 1888569667033489
Offset: 0

Author

Ron Knott, Jun 27 2013

Keywords

Examples

			a(2) = Fibonacci(2)^3 + Fibonacci(4)^3 = 1^3 + 2^3 = 9
		

Crossrefs

Cf. A000045 (Fibonacci), A056570 (Fibonacci^3).
Cf. A110224 (Fib(n)^3 + Fib(n+1)^3).

Programs

  • Mathematica
    Table[Fibonacci[n]^3 + Fibonacci[n+2]^3,{n,0,50}]
    #[[1]]+#[[3]]&/@Partition[Fibonacci[Range[0,30]]^3,3,1] (* or *) LinearRecurrence[{3,6,-3,-1},{1,9,28,133},30] (* Harvey P. Dale, Jun 30 2025 *)
  • PARI
    a(n) = fibonacci(n)^3+fibonacci(n+2)^3; \\ Joerg Arndt, Jul 07 2013

Formula

a(n) = 3a(n-1)+6a(n-2)-3a(n-3)-a(n-4)
G.f.: (1+6x-5x^2-2x^3)/(1-3x-6x^2+3x^3+x^4)= (2x^2+7x+1)(1-x)/((x^2-x-1)(x^2+4x-1))

A226958 a(n) = Fibonacci(n-2)*Fibonacci(n)*Fibonacci(n+2).

Original entry on oeis.org

2, 0, 10, 24, 130, 504, 2210, 9240, 39338, 166320, 705058, 2985840, 12649570, 53582256, 226981610, 961503816, 4073004770, 17253510120, 73087065922, 309601740360, 1311494081482, 5555577978720, 23533806138050, 99690802301664, 422297015715650, 1788878864564064, 7577812474943050
Offset: 1

Author

Ron Knott, Jun 27 2013

Keywords

Examples

			a(3) = F(1)*F(3)*F(5) = 1*2*5 = 10.
		

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).
Products of 3 Fibonaccis: A065563, A056570, A220362, A110224.

Programs

  • Mathematica
    Table[Fibonacci[n - 2] Fibonacci[n] Fibonacci[n + 2], {n, 1, 20}]
    LinearRecurrence[{3,6,-3,-1},{2,0,10,24},30] (* Harvey P. Dale, Apr 10 2022 *)
    Join[{2},#[[1]]#[[3]]#[[5]]&/@Partition[Fibonacci[Range[0,40]],5,1]] (* Harvey P. Dale, May 20 2025 *)
  • PARI
    a(n)=fibonacci(n-2)*fibonacci(n)*fibonacci(n+2); \\ Joerg Arndt, Jul 07 2013

Formula

a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4).
G.f.: 2*(1-3*x-x^2)/(1-3*x-6*x^2+3*x^3+x^4).
a(n) = Lucas(n-1)*Fibonacci(n+2) = Fibonacci(n-2)*Lucas(n+1).
a(n) = (1/5)*(Fibonacci(3*n)-8*(-1)^n*Fibonacci(n)). - Ehren Metcalfe, Mar 26 2016
For n >= 3, a(n) is the numerator of the continued fraction [1,..,1, 3 ,1,..,1, 3 ,1,..,1] with three runs of 1's each of length n-3 and each separated by a single 3. For example, a(5)=130 which is the numerator of the continued fraction [1,1, 3 ,1,1, 3 ,1,1]. - Greg Dresden, Jan 01 2022

Extensions

More terms from Joerg Arndt, Jul 07 2013

A147561 Number of representations of n in the Fibonacci-squared base system. The columns are ..., 64, 25, 9, 4, 1, 1 = ..., 8^2, 5^2, 3^2, 2^2, 1^2, 1^2, i.e., the Fibonacci numbers A000045 squared. The 'digits' are 0, 1 or 2.

Original entry on oeis.org

2, 3, 2, 2, 2, 3, 2, 2, 3, 5, 5, 3, 2, 2, 3, 2, 2, 3, 5, 5, 3, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 3, 5, 5, 3, 2, 2, 3, 2, 2, 3, 5, 5, 3, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 3, 5, 5, 3, 2, 3, 5, 5, 4, 5, 7, 8, 5, 4, 5, 8, 7, 5, 4, 5, 5, 3, 2, 3, 5, 5, 3, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 3, 5, 5
Offset: 1

Author

Ron Knott, Nov 07 2008

Keywords

Comments

Note there are two columns labeled 1.

Examples

			a(2) = 3 since 2 is 02, 20 and 11 using both columns labeled 1;
a(10) = 5 because 10 = 9 + 1 with 2 Fib-sq reps 1010, 1001; 10 = 2*4 + 2 with 3 Fib-sq reps 220, 211 and 202; so there are in total 5 Fib-sq representations for 10.
		

Crossrefs

Programs

  • PARI
    first(n) = {my(fib2list = List(), fib2 = 1, t = 1, res = vector(n)); while(fib2 <= n, listput(fib2list, fib2); t++; fib2 = fibonacci(t)^2); for(i=1,3^#fib2list-1, b = digits(i,3); b = concat(vector(#fib2list-#b),b); s = sum(i=1,#b, b[i]*fib2list[i]); if(s<=n, res[s]++));res} \\ David A. Corneth, Jul 24 2017

A122194 Numbers that are the sum of exactly two sets of Fibonacci numbers.

Original entry on oeis.org

3, 5, 6, 9, 10, 15, 17, 25, 28, 41, 46, 67, 75, 109, 122, 177, 198, 287, 321, 465, 520, 753, 842, 1219, 1363, 1973, 2206, 3193, 3570, 5167, 5777, 8361, 9348, 13529, 15126, 21891, 24475, 35421, 39602, 57313, 64078, 92735, 103681, 150049, 167760, 242785
Offset: 1

Author

Ron Knott, Aug 25 2006

Keywords

Examples

			a(1)=3 as 3 is the sum of just 2 Fibonacci sets {3=Fibonacci(4)} and {1=Fibonacci(2), 2=Fibonacci(3)};
a(2)=5 as 5 is sum of Fibonacci sets {5} and {2,3} only.
		

Programs

  • GAP
    a:= function(n)
        if n mod 2=0 then return 2*Fibonacci(Int((n+6)/2)) -1;
        else return Lucas(1,-1, Int((n+5)/2))[2] -1;
        fi;
      end;
    List([1..50], n-> a(n) ); # G. C. Greubel, Jul 13 2019
  • Magma
    f:=Floor; [(n mod 2) eq 0 select 2*Fibonacci(f((n+6)/2))-1 else Lucas(f((n+5)/2))-1: n in [1..50]]; // G. C. Greubel, Jul 13 2019
    
  • Maple
    fib:= combinat[fibonacci]:
    lucas:=n->fib(n-1)+fib(n+1):
    a:=n -> if n mod 2 = 0 then 2 *fib(n/2+3) -1 else lucas((n+1)/2+2)-1 fi:
    seq(a(n), n=1..50);
  • Mathematica
    LinearRecurrence[{1, 1, -1, 1, -1}, {3, 5, 6, 9, 10, 15}, 40] (* Vincenzo Librandi, Jul 25 2017 *)
    Table[If[Mod[n,2]==0, 2*Fibonacci[(n+6)/2]-1, LucasL[(n+5)/2]-1], {n,50}] (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    vector(50, n, f=fibonacci; if(n%2==0, 2*f((n+6)/2)-1, f((n+7)/2) + f((n+3)/2)-1)) \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    def a(n):
        if (mod(n,2)==0): return 2*fibonacci((n+6)/2) - 1
        else: return lucas_number2((n+5)/2, 1,-1) -1
    [a(n) for n in (1..50)] # G. C. Greubel, Jul 13 2019
    

Formula

a(2n-1) = A000032(n+2) - 1,
a(2n) = 2*A000045(n+3) - 1.
a(2n-1) = A001610(n+2), a(2n) = A001595(n+2).
a(1)=3, a(2)=5, a(3)=6, a(4)=9, a(n) = a(n-2) + a(n-4) + 1, n > 4.
G.f.: (3 + 2*x - 2*x^2 + x^3 - 3*x^4)/(1-x-x^2+x^3-x^4+x^5).
a(n) = A272632(n)-1. - R. J. Mathar, Jan 13 2023

A122195 Numbers that are the sum of exactly 3 sets of Fibonacci numbers.

Original entry on oeis.org

8, 11, 13, 14, 18, 19, 22, 23, 30, 31, 36, 38, 49, 51, 59, 62, 80, 83, 96, 101, 130, 135, 156, 164, 211, 219, 253, 266, 342, 355, 410, 431, 554, 575, 664, 698, 897, 931, 1075, 1130, 1452, 1507, 1740, 1829, 2350, 2439, 2816, 2960, 3803, 3947, 4557, 4790, 6154
Offset: 1

Author

Ron Knott, Aug 25 2006, corrected Aug 29 2006

Keywords

Examples

			8 is the sum of only 3 sets of Fibonacci numbers: {8}, {3,5} and {1,2,5};
11 is the sum of only {3,8}, {1,2,8}, {1,2,3,5}.
		

Crossrefs

Programs

  • GAP
    a:=[11,13,14,18,19,22,23,30];; for n in [9..60] do a[n]:=a[n-4]+a[n-8]+1; od; Concatenation([8], a); # G. C. Greubel, Jul 13 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1 - x-x^4+x^5-x^8+x^9) )); // G. C. Greubel, Jul 13 2019
    
  • Maple
    # first N terms:
    series((8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(x^9-x^8+x^5-x^4-x+1),x,N+1);
  • Mathematica
    CoefficientList[Series[(8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1 - x-x^4+x^5-x^8+x^9), {x, 0, 60}], x] (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    my(x='x+O('x^60)); Vec((8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8 -3*x^9)/(1-x-x^4+x^5-x^8+x^9)) \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    ((8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1 - x-x^4+x^5-x^8+x^9)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Jul 13 2019
    

Formula

G.f.: (8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1-x-x^4+x^5-x^8+x^9).
a(n) = a(n-4) + a(n-8) + 1.
a(0)=8, a(1)=11, a(2)=13, a(3)=18, then: a(4n) = A022318(n+3) = 2*A000045(n+5) + A000045(n+3) - 1, a(4n+1) = A022406(n+2) = 4*A000045(n+4) - 1, a(4n+2) = A022308(n+4) = 2*A000045(n+4) + A000045(n+6) - 1, a(4n+3) = 3*A000045(n+4) - 1, for n>=1.
a(n) = a(n-1) +a(n-4) -a(n-5) +a(n-8) -a(n-9). - G. C. Greubel, Jul 13 2019

A110703 Numbers S with two neighboring run sums (sum of positive integer runs) S = a+(a+1)+..+b=(b+1)+(b+2)...+c, 0

Original entry on oeis.org

3, 15, 27, 30, 42, 75, 90, 105, 135, 147, 165, 243, 252, 270, 273, 315, 363, 375, 378, 420, 462, 495, 507, 612, 660, 675, 693, 735, 750, 780, 810, 855, 858, 867, 945, 1050, 1083, 1155, 1170, 1215, 1287, 1323, 1365, 1470, 1485, 1518, 1587, 1785, 1815, 1875, 1950
Offset: 1

Author

Ron Knott, Aug 04 2005

Keywords

Comments

In other words, numbers n such that a list of consecutive numbers can be split into two parts in which their sums both equal n. - A. D. Skovgaard, May 22 2017
If the two runs overlap in one number, the runs are Friends and their sums are A110701. The sums are the difference of two triangular numbers A000217.
The subsequence where there is more than one possible splitting begins 105, 945, 1365, 2457, 2625, 3990, 5145, 8505, ... - Jean-François Alcover, May 22 2017
a(n) seems to always be divisible by 3.- A. D. Skovgaard, May 22 2017. This is true. Sequence lists values of n = t(t+1)/2 - k(k+1)/2 = m(m+1)/2 - t(t+1)/2 with k < t < m. Since any triangular number must be of the form 3w or 3w+1, then there are two possibilities for n = 3w - k(k+1)/2 = m(m+1)/2 - 3w or n = 3w + 1 - k(k+1)/2 = m(m+1)/2 - 3w - 1. For first case, if k(k+1)/2 = 3u+1, there is no solution for m. Similarly for second case, if k(k+1)/2 = 3u, there is no solution for m. So always n must be divisible by 3. - Altug Alkan, May 22 2017

Examples

			3 = 1+2 = 3, so 3 is a term.
15 = 4+5+6 = 7+8 so 15 is a term.
a(6) = 75 because 75 = 3+4+5+6+7+8+9+10+11+12 = 13+14+15+16+17.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], False =!= Reduce[# == Sum[k, {k, x, y}] == Sum[k, {k, y + 1, z}] && z >= y >= x > 0, {x, y, z}, Integers] &] (* Giovanni Resta, May 22 2017 *)

Extensions

Initial 3 added by A. D. Skovgaard, May 22 2017

A110701 Friendly run sums: numbers S with two run sums (sum of positive integer runs) that share one common number, i.e., S = a + (a+1) + ... + b = b + (b+1) + ... + c with a < b < c.

Original entry on oeis.org

9, 21, 30, 42, 65, 70, 99, 105, 117, 133, 135, 154, 175, 180, 225, 231, 275, 285, 341, 342, 345, 364, 385, 414, 440, 450, 455, 481, 495, 540, 546, 567, 630, 645, 675, 693, 744, 750, 765, 825, 833, 936, 945, 990, 1035, 1045, 1140, 1161, 1170, 1176, 1178
Offset: 1

Author

Ron Knott, Aug 04 2005

Keywords

Comments

The sums are the difference of two triangular numbers A000217. The common numbers themselves are A094550. The sums, n > 0, are n = (b-a+1)(a+b)/2 = (b+c)(c-b+1)/2 where b^2 + a - a^2 = c^2 + c - b^2, is solvable in integers for 0 < a < b < c. Since the runs have something in common, they are "friends". The series of sums *without* the common number is A110702. The numbers common to the two runs are A094550.

Examples

			2 + 3 + 4 = 4 + 5 share the common number 4. The sum of both is 9 and this is the smallest such sum with a common "friend" (4), so a(1)=9.
		

Crossrefs

A110702 Numbers S with two runsums (sum of positive integer runs) where the 2 runs are separated by a single number gap (b), i.e., S = a + (a+1) + ... + (b-1) = (b+1) + ... + c with a < b-1, b < c.

Original entry on oeis.org

5, 15, 21, 33, 54, 54, 85, 90, 100, 117, 110, 135, 153, 161, 204, 195, 252, 261, 315, 308, 315, 315, 351, 385, 405, 418, 414, 450, 455, 476, 510, 533, 595, 609, 637, 650, 705, 693, 684, 777, 792, 870, 884, 931, 986, 999, 1071, 1105, 1121, 1110, 1125, 1210, 1230
Offset: 1

Author

Ron Knott, Aug 04 2005

Keywords

Comments

The sums are the difference of two triangular numbers A000217. The sum series where the missing number is included is A110701. The numbers in the gap between the two runs are A094550.

Examples

			1+2+3+4+5 and 7+8 have a gap between them of (6). The sum of both is 15 so 15 is in the ordered series (as a(2)).
		

Crossrefs