cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A122195 Numbers that are the sum of exactly 3 sets of Fibonacci numbers.

Original entry on oeis.org

8, 11, 13, 14, 18, 19, 22, 23, 30, 31, 36, 38, 49, 51, 59, 62, 80, 83, 96, 101, 130, 135, 156, 164, 211, 219, 253, 266, 342, 355, 410, 431, 554, 575, 664, 698, 897, 931, 1075, 1130, 1452, 1507, 1740, 1829, 2350, 2439, 2816, 2960, 3803, 3947, 4557, 4790, 6154
Offset: 1

Views

Author

Ron Knott, Aug 25 2006, corrected Aug 29 2006

Keywords

Examples

			8 is the sum of only 3 sets of Fibonacci numbers: {8}, {3,5} and {1,2,5};
11 is the sum of only {3,8}, {1,2,8}, {1,2,3,5}.
		

Crossrefs

Programs

  • GAP
    a:=[11,13,14,18,19,22,23,30];; for n in [9..60] do a[n]:=a[n-4]+a[n-8]+1; od; Concatenation([8], a); # G. C. Greubel, Jul 13 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1 - x-x^4+x^5-x^8+x^9) )); // G. C. Greubel, Jul 13 2019
    
  • Maple
    # first N terms:
    series((8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(x^9-x^8+x^5-x^4-x+1),x,N+1);
  • Mathematica
    CoefficientList[Series[(8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1 - x-x^4+x^5-x^8+x^9), {x, 0, 60}], x] (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    my(x='x+O('x^60)); Vec((8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8 -3*x^9)/(1-x-x^4+x^5-x^8+x^9)) \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    ((8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1 - x-x^4+x^5-x^8+x^9)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Jul 13 2019
    

Formula

G.f.: (8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1-x-x^4+x^5-x^8+x^9).
a(n) = a(n-4) + a(n-8) + 1.
a(0)=8, a(1)=11, a(2)=13, a(3)=18, then: a(4n) = A022318(n+3) = 2*A000045(n+5) + A000045(n+3) - 1, a(4n+1) = A022406(n+2) = 4*A000045(n+4) - 1, a(4n+2) = A022308(n+4) = 2*A000045(n+4) + A000045(n+6) - 1, a(4n+3) = 3*A000045(n+4) - 1, for n>=1.
a(n) = a(n-1) +a(n-4) -a(n-5) +a(n-8) -a(n-9). - G. C. Greubel, Jul 13 2019
Showing 1-1 of 1 results.